Recent Content by Phạm Chí Năng

  1. P

    Bài 1: Định nghĩa và các phép toán số phức

    Cho hai số phức \({z_1} = 1 - 2i,{\rm{ }}{z_2} = 3 + i.\) Tìm phần thực và phần ảo của số phức \(z=z_1z_2\) A. Số phức z có phần thực là 3, phần ảo là-5i B. Số phức z có phần thực là 5, phần ảo là -5i C. Số phức z có phần thực là 5, phần ảo là -5i D. Số phức z có phần thực là...
  2. P

    Trắc nghiệm về Vị Trí Tương đối Của đường Thẳng Và Mặt Phẳng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\frac{{2x - 2}}{{3n}} = \frac{{y + 1}}{4} = \frac{{3z + 6}}{{2m}}\,\,\,\left( {m,\,\,n \ne 0} \right)\) và mặt phẳng \(\left( P \right):3x + 4y - 2z + 5 = 0\). Khi đường thẳng d vuông góc với mặt phẳng (P) thì m+n bằng bao nhiêu? A...
  3. P

    Bài 1: Định nghĩa và các phép toán số phức

    Tìm điểm biểu diễn của số phức \(z = 5 - 3i\) trên mặt phẳng phức. A. \(M\left( {5; - 3} \right)\) B. \(N\left( { - 3;5} \right)\) C. \(P\left( { - 5;3} \right)\) D. \(Q\left( {3; - 5} \right)\)
  4. P

    Định nghĩa và tính chất nguyên hàm

    Cho \(f\left( x \right),g\left( x \right)\) là hai hàm số liên tục trên \(\mathbb{R}\). Mệnh đề nào sau đây là sai? A. \(\int\limits_a^b {f\left( x \right)dx = } \int\limits_a^b {f\left( y \right)dy}\) B. \(\int\limits_a^b {\left( {f\left( x \right) + g\left( x \right)} \right)dx = }...
  5. P

    Nâng cao Những bài về đường thẳng trong hình giải tích phẳng bạn nên biết

    Trong không gian với hệ trục tọa độ Oxyz, cho A(1;2;-5) Gọi M, N, P là hình chiếu của A lên các trục Ox, Oy, Oz. Viết phương trình mặt phẳng (MNP). A. \(x + \frac{y}{2} - \frac{z}{5} = 1\) B. \(x + 2y - 5z + 1 = 0\) C. \(x + 2y - 5z = 1\) D. \(x + \frac{y}{2} - \frac{z}{5} + 1 = 0\)
  6. P

    Nâng cao Ứng dụng tích phân tính diện tích và thể tích

    Tính diện tích S của hình phẳng được giới hạn bởi đường cong \(\left( C \right):y = {x^3} - 4x\), trục hoành và hai đường thẳng \(x = 0;x = 4.\) A. \(S = 32\) B. \(S = 32\pi \) C. \(S = 40\) D. \(S = 40\pi \)
  7. P

    Bài 3. Chuyển động thẳng biến đổi đều

    Thả một hòn bi lăn nhanh dần đều từ đỉnh của dốc \(AB\) dài \(1,8m\). Xuống hết dốc hòn bi tiếp tục lăn chậm dần đều trên đoạn đường nằm ngang và dừng lại tại điểm \(C\) cách \(B\) \(1,8m\). Biết rằng sau khi lăn qua \(B\) được $4s$, hòn bi đến điểm $D$ với vận tốc $0,2m/s$. Tìm đoạn đường...
  8. P

    Nâng cao Cực đại và cực tiểu của hàm số

    Bài này giải thế nào ạ! Tìm giá trị cực đại \(y_{CD}\) của hàm số \(y = {x^3} - 3x - 2\). A. \({y_{CD}} = 0\) B. \({y_{CD}} = 4\) C. \({y_{CD}} = -1\) D. \({y_{CD}} = 1\)
  9. P

    Giải phương trình logarit

    Tìm tập nghiệm của bất phương trình: \(2{\log _3}\left( {x - 1} \right) + {\log _{\sqrt 3 }}\left( {2x - 1} \right) \le 2\). A. \(S = \left( {1;2} \right)\) B. \(S = \left( { - \frac{1}{2};2} \right)\) C. \(S = \left( {1;2} \right]\) D. \(S = \left[ {1;2} \right)\)
  10. P

    Giải phương trình logarit

    Câu này giải sao ạ! Giải phương trình \({\log _5}\left( {2x - 3} \right) = 5\) A. x = 3128 B. x = 1564 C. x = 4 D. x = 2
  11. P

    Bài tập trắc nghiệm hình lăng trụ

    Nếu độ dài cạnh bên của một khối lăng trụ tam giác đều tăng lên ba lần và độ dài cạnh đáy của nó giảm đi một nửa thì thể tích của khối lăng trụ đó thay đổi như thế nào? A. Có thể tăng hoặc giảm B. Không thay đổi C. Tăng lên. D. Giảm đi.
Back
Top