Các dạng toán phép đối xứng tâm

Tăng Giáp

Administrator
Thành viên BQT
KIẾN THỨC CẦN NẮM
1. Định nghĩa phép đối xứng tâm

• Cho điểm $I$. Phép biến hình biến điểm $I$ thành chính nó và biến mỗi điểm $M$ khác $I$ thành điểm $M’$ sao cho $I$ là trung điểm của $MM’$ được gọi là phép đối xứng tâm $I$, kí hiệu ${{Đ}_{I}}$.
• ${Đ_I}\left( M \right) = M’$ $ \Leftrightarrow \overrightarrow {IM} + \overrightarrow {IM’} = \overrightarrow 0 .$
• Nếu ${Đ_I}\left( {\left( H \right)} \right) = \left( H \right)$ thì $I$ được gọi là tâm đối xứng của hình $\left( H \right)$.
2. Biểu thức tọa độ của phép đối xứng tâm
Trong mặt phẳng $Oxy$ cho $I\left( a;b \right)$, $M\left( x;y \right)$, gọi $M’\left( x’;y’ \right)$ là ảnh của $M$ qua phép đối xứng tâm $I$ thì $\left\{ \begin{align}
& x’=2a-x \\
& y’=2b-y \\
\end{align} \right.$
3. Tính chất phép đối xứng tâm
+ Bảo toàn khoảng cách giữa hai điểm bất kì.
+ Biến một đường thẳng thành đường thẳng song song hoặc trùng với đường thẳng đã cho.
+ Biến một đoạn thẳng thành đoạn thẳng bằng đoạn thẳng đã cho.
+ Biến một tam giác thành tam giác bằng tam giác đã cho.
+ Biến đường tròn thành đường tròn có cùng bán kính.
 

Members online

No members online now.
Back
Top