Các dạng toán phép vị tự

Tăng Giáp

Administrator
Thành viên BQT
KIẾN THỨC CẦN NẮM
1. Định nghĩa phép vị tự

• Cho điểm $I$ và một số thực $k\ne 0$, phép biến hình biến mỗi điểm $M$ thành điểm $M’$ sao cho $\overrightarrow{IM’}=k.\overrightarrow{IM}$ được gọi là phép vị tự tâm $I$, tỉ số $k$, ký hiệu ${{V}_{\left( I;k \right)}}.$
• ${V_{\left( {I;k} \right)}}\left( M \right) = M’$ $ \Leftrightarrow \overrightarrow {IM’} = k.\overrightarrow {IM} .$
2. Biểu thức tọa độ của phép vị tự
Trong mặt phẳng tọa độ $Oxy$, cho $I\left( {{x_0};{y_0}} \right)$, $M\left( {x;y} \right)$, gọi $M’\left( {x’;y’} \right) = {V_{\left( {I;k} \right)}}\left( M \right)$ thì $\left\{ \begin{array}{l}
x’ = kx + \left( {1 – k} \right){x_0}\\
y’ = ky + \left( {1 – k} \right){y_0}
\end{array} \right.$
3. Tính chất của phép vị tự
• Nếu ${V_{\left( {I;k} \right)}}\left( M \right) = M’$, ${V_{\left( {I;k} \right)}}\left( N \right) = N’$ thì $\overrightarrow {M’N’} = k\overrightarrow {MN} $ và $M’N’ = \left| k \right|MN.$
• Phép vị tự tỉ số $k:$
+ Biến ba điểm thẳng hàng thành ba điểm và bảo toàn thứ tự giữa ba điểm đó.
+ Biến một đường thẳng thành đường thẳng thành một đường thẳng song song hoặc trùng với đường thẳng đã cho, biến tia thành tia, biến đoạn thẳng thành đoạn thẳng.
+ Biến một tam giác thành tam giác đồng dạng với tam giác đã cho, biến góc thành góc bằng góc đã cho.
+ Biến đường tròn có bán kính $R$ thành đường tròn có bán kính $\left| k \right|R.$
4. Tâm vị tự của hai đường tròn
• Với hai đường tròn bất kì luôn có một phép vị tự biến đường tròn này thành đường tròn kia, tâm của phép vị tự này được gọi là tâm vị tự của hai đường tròn.
• Cho hai đường tròn $\left( {I;R} \right)$ và $\left( {I’;R’} \right).$
+ Nếu $I\equiv I’$ thì các phép vị tự ${{V}_{\left( I;\pm \frac{R’}{R} \right)}}$biến $\left( I;R \right)$ thành$\left( I’;R’ \right)$.


Các dạng toán phép vị tự.png


+ Nếu $I\ne I’$ và $R\ne R’$ thì các phép vị tự ${{V}_{\left( O;\frac{R’}{R} \right)}}$ và ${{V}_{\left( {{O}_{1}};-\frac{R’}{R} \right)}}$ biến $\left( I;R \right)$ thành$\left( I’;R’ \right)$. Ta gọi $O$ là tâm vị tự ngoài còn ${{O}_{1}}$ là tâm vị tự trong của hai đường tròn.

Các dạng toán phép vị tự.png


+ Nếu $I\ne I’$ và $R=R’$ thì có ${{V}_{\left( {{O}_{1}};-1 \right)}}$ biến $\left( I;R \right)$ thành$\left( I’;R’ \right)$.

Các dạng toán phép vị tự.png
 

Members online

No members online now.
Back
Top