Ví dụ 1: Nêu mệnh đề phủ định của các mệnh đề sau, cho biết mệnh đề này đúng hay sai?
$P:$ “Hình thoi có hai đường chéo vuông góc với nhau”.
$Q:$ “$6$ là số nguyên tố”.
$R:$ “Tổng hai cạnh của một tam giác lớn hơn cạnh còn lại”.
$S:$ “$5>-3$”.
$K:$ “Phương trình ${{x}^{4}}-2{{x}^{2}}+2=0$ có nghiệm”.
$H:$ “${{\left( \sqrt{3}-\sqrt{12} \right)}^{2}}=3$”.
Ta có các mệnh đề phủ định là:
$\overline{P}:$ “Hai đường chéo của hình thoi không vuông góc với nhau”, mệnh đề này sai.
$\overline{Q}:$ “$6$ không phải là số nguyên tố”, mệnh đề này đúng.
$\overline{R}:$ “Tổng hai cạnh của một tam giác nhỏ hơn hoặc bằng cạnh còn lại”, mệnh đề này sai.
$\overline{S}:$ “$5\le -3$”, mệnh đề này sai.
$\overline{K}:$ “Phương trình ${{x}^{4}}-2{{x}^{2}}+2=0$ vô nghiệm”, mệnh đề này đúng.
$\overline{H}:$ “${{\left( \sqrt{3}-\sqrt{12} \right)}^{2}}\ne 3$”, mệnh đề này sai.
Ví dụ 2: Phát biểu mệnh đề $P\Rightarrow Q$ và phát biểu mệnh đề đảo, xét tính đúng sai của nó.
a. $P:$ “Tứ giác $ABCD$ là hình thoi” và $Q:$ “Tứ giác $ABCD$ có $AC$ và $BD$ cắt nhau tại trung điểm mỗi đường”.
b. $P:$ “$2>9$” và $Q:$ “$4<3$”.
c. $P:$ “Tam giác $ABC$ vuông cân tại $A$” và $Q:$ “Tam giác $ABC$ có $\widehat{A}=2\widehat{B}$”.
a. Mệnh đề $P\Rightarrow Q$: “Nếu tứ giác $ABCD$ là hình thoi thì $AC$ và $BD$ cắt nhau tại trung điểm mỗi đường”, mệnh đề này đúng.
Mệnh đề đảo $Q\Rightarrow P$: “Nếu tứ giác $ABCD$ có $AC$ và $BD$ cắt nhau tại trung điểm mỗi đường thì$ABCD$ là hình thoi”, mệnh đề này sai.
b. Mệnh đề $P\Rightarrow Q$: “Nếu $2>9$ thì $4<3$”, mệnh đề này đúng.
Mệnh đề đảo $Q\Rightarrow P$: “Nếu $4<3$ thì $2>9$”, mệnh đề này đúng.
c. Mệnh đề $P\Rightarrow Q$: “Nếu tam giác $ABC$ vuông cân tại $A$ thì $\widehat{A}=2\widehat{B}$”, mệnh đề này đúng.
Mệnh đề đảo $Q\Rightarrow P$: “Nếu tam giác $ABC$ có $\widehat{A}=2\widehat{B}$ thì nó vuông cân tại $A$”, mệnh đề này sai.
Ví dụ 3: Phát biểu mệnh đề $P\Leftrightarrow Q$ và và xét tính đúng sai của nó.
a. $P:$ “Tứ giác $ABCD$ là hình thoi” và $Q:$ “Tứ giác $ABCD$ là hình bình hành có hai đường chéo vuông góc với nhau”.
b. $P:$ “Bất phương trình $\sqrt{{{x}^{2}}-3x}>1$ có nghiệm” và $Q:$ “$\sqrt{{{\left( -1 \right)}^{2}}-3.\left( -1 \right)}>1$”.
a. Mệnh đề $P \Leftrightarrow Q$: “Tứ giác $ABCD$ là hình thoi khi và chỉ khi tứ giác $ABCD$ là hình bình hành có hai đường chéo vuông góc với nhau”, mệnh đề này đúng vì mệnh đề $P \Rightarrow Q$, $Q \Rightarrow P$ đều đúng.
b. Mệnh đề $P \Leftrightarrow Q$: “Bất phương trình $\sqrt{{{x}^{2}}-3x}>1$ có nghiệm khi và chỉ khi $\sqrt{{{\left( -1 \right)}^{2}}-3.\left( -1 \right)}>1$”, mệnh đề này đúng vì mệnh đề $P, Q$ đều đúng, do đó mệnh đề $P\Rightarrow Q$, $Q \Rightarrow P$ đều đúng.
$P:$ “Hình thoi có hai đường chéo vuông góc với nhau”.
$Q:$ “$6$ là số nguyên tố”.
$R:$ “Tổng hai cạnh của một tam giác lớn hơn cạnh còn lại”.
$S:$ “$5>-3$”.
$K:$ “Phương trình ${{x}^{4}}-2{{x}^{2}}+2=0$ có nghiệm”.
$H:$ “${{\left( \sqrt{3}-\sqrt{12} \right)}^{2}}=3$”.
Ta có các mệnh đề phủ định là:
$\overline{P}:$ “Hai đường chéo của hình thoi không vuông góc với nhau”, mệnh đề này sai.
$\overline{Q}:$ “$6$ không phải là số nguyên tố”, mệnh đề này đúng.
$\overline{R}:$ “Tổng hai cạnh của một tam giác nhỏ hơn hoặc bằng cạnh còn lại”, mệnh đề này sai.
$\overline{S}:$ “$5\le -3$”, mệnh đề này sai.
$\overline{K}:$ “Phương trình ${{x}^{4}}-2{{x}^{2}}+2=0$ vô nghiệm”, mệnh đề này đúng.
$\overline{H}:$ “${{\left( \sqrt{3}-\sqrt{12} \right)}^{2}}\ne 3$”, mệnh đề này sai.
Ví dụ 2: Phát biểu mệnh đề $P\Rightarrow Q$ và phát biểu mệnh đề đảo, xét tính đúng sai của nó.
a. $P:$ “Tứ giác $ABCD$ là hình thoi” và $Q:$ “Tứ giác $ABCD$ có $AC$ và $BD$ cắt nhau tại trung điểm mỗi đường”.
b. $P:$ “$2>9$” và $Q:$ “$4<3$”.
c. $P:$ “Tam giác $ABC$ vuông cân tại $A$” và $Q:$ “Tam giác $ABC$ có $\widehat{A}=2\widehat{B}$”.
a. Mệnh đề $P\Rightarrow Q$: “Nếu tứ giác $ABCD$ là hình thoi thì $AC$ và $BD$ cắt nhau tại trung điểm mỗi đường”, mệnh đề này đúng.
Mệnh đề đảo $Q\Rightarrow P$: “Nếu tứ giác $ABCD$ có $AC$ và $BD$ cắt nhau tại trung điểm mỗi đường thì$ABCD$ là hình thoi”, mệnh đề này sai.
b. Mệnh đề $P\Rightarrow Q$: “Nếu $2>9$ thì $4<3$”, mệnh đề này đúng.
Mệnh đề đảo $Q\Rightarrow P$: “Nếu $4<3$ thì $2>9$”, mệnh đề này đúng.
c. Mệnh đề $P\Rightarrow Q$: “Nếu tam giác $ABC$ vuông cân tại $A$ thì $\widehat{A}=2\widehat{B}$”, mệnh đề này đúng.
Mệnh đề đảo $Q\Rightarrow P$: “Nếu tam giác $ABC$ có $\widehat{A}=2\widehat{B}$ thì nó vuông cân tại $A$”, mệnh đề này sai.
Ví dụ 3: Phát biểu mệnh đề $P\Leftrightarrow Q$ và và xét tính đúng sai của nó.
a. $P:$ “Tứ giác $ABCD$ là hình thoi” và $Q:$ “Tứ giác $ABCD$ là hình bình hành có hai đường chéo vuông góc với nhau”.
b. $P:$ “Bất phương trình $\sqrt{{{x}^{2}}-3x}>1$ có nghiệm” và $Q:$ “$\sqrt{{{\left( -1 \right)}^{2}}-3.\left( -1 \right)}>1$”.
a. Mệnh đề $P \Leftrightarrow Q$: “Tứ giác $ABCD$ là hình thoi khi và chỉ khi tứ giác $ABCD$ là hình bình hành có hai đường chéo vuông góc với nhau”, mệnh đề này đúng vì mệnh đề $P \Rightarrow Q$, $Q \Rightarrow P$ đều đúng.
b. Mệnh đề $P \Leftrightarrow Q$: “Bất phương trình $\sqrt{{{x}^{2}}-3x}>1$ có nghiệm khi và chỉ khi $\sqrt{{{\left( -1 \right)}^{2}}-3.\left( -1 \right)}>1$”, mệnh đề này đúng vì mệnh đề $P, Q$ đều đúng, do đó mệnh đề $P\Rightarrow Q$, $Q \Rightarrow P$ đều đúng.