Dạng 3: Thiết diện của hình đa diện với mặt phẳng biết mặt phẳng qua M

Tăng Giáp

Administrator
Thành viên BQT
Dạng 3: Thiết diện của hình đa diện với mặt phẳng $\left( \alpha \right)$, biết mặt phẳng $\left( \alpha \right)$ qua $M$ và song song với hai đường thẳng $a$ và $b.$
Phương pháp:
+ Qua $\left( \alpha \right)$ kẻ hai đường thẳng $\left( \alpha \right)$lần lượt song song với hai đường thẳng $\left( \alpha \right)$
+ Tìm điểm chung của $\left( \alpha \right)$với một mặt nào đó của hình đa diện
+ Mặt phẳng nào chứa điểm chung và chứa đường thẳng $\left( \alpha \right)$hoặc $\left( \alpha \right)$thì tiếp tục kẻ đường thẳng qua điểm chung và song song với đường thẳng $\left( \alpha \right)$hoặc $\left( \alpha \right)$cho đến khi thiết diện được hình thành.

Ví dụ 5: Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành. Gọi $O$ là giao điểm của hai đường chéo hình bình hành. Một mặt phẳng $\left( \alpha \right)$ qua $O$, song song với $SA,CD$. Tìm thiết diện tạo bởi $\left( \alpha \right)$ và hình chóp.

phân biệt không thẳng hàng.png


Tìm $\left( \alpha \right) \cap \left( {ABCD} \right)$:
Ta có: $\left\{ \begin{array}{l}
O \in \left( \alpha \right) \cap \left( {ABCD} \right)\\
CD\parallel \left( \alpha \right)\\
\left( {ABCD} \right) \supset CD
\end{array} \right.$ $ \Rightarrow \left( \alpha \right) \cap \left( {ABCD} \right) = MN$ $\left( 1 \right)$, với $MN$ là đoạn thẳng qua $O$ và song song với $CD$, $\left( {M \in BC,N \in AD} \right).$
Tìm $\left( \alpha \right) \cap \left( {SAD} \right)$:
Ta có: $\left\{ \begin{array}{l}
N \in \left( \alpha \right) \cap \left( {SAD} \right)\\
SA\parallel \left( \alpha \right)\\
\left( {SAD} \right) \supset SA
\end{array} \right.$ $ \Rightarrow \left( \alpha \right) \cap \left( {SAD} \right) = NP$ $\left( 2 \right)$ với $NP\parallel SA$ $\left( {P \in SD} \right).$
Tìm $\left( \alpha \right) \cap \left( {SCD} \right)$:
Ta có: $\left\{ \begin{array}{l}
P \in \left( \alpha \right) \cap \left( {SCD} \right)\\
CD\parallel \left( \alpha \right)\\
\left( {SCD} \right) \supset CD
\end{array} \right.$ $ \Rightarrow \left( \alpha \right) \cap \left( {SCD} \right) = MQ$ $\left( 3 \right)$ với $PQ\parallel CD$ $\left( {Q \in SC} \right).$
Ta có: $\left( \alpha \right) \cap \left( {SBC} \right) = MQ$ $\left( 4 \right).$
Từ $\left( 1 \right),\left( 2 \right),\left( 3 \right),\left( 4 \right)$ suy ra thiết diện cần tìm là tứ giác $MNPQ.$
Ta lại có: $MN\parallel CD\parallel QP.$ Vậy thiết diện cần tìm là hình thang $MNPQ.$

Ví dụ 6: Cho hình chóp $S.ABCD$, đáy $ABCD$ là hình thang cân có $AD$ không song song với $BC$. Gọi $M$ là trung điểm của $AD$ và $\left( \alpha \right)$ là mặt phẳng qua $M$, song song với $SA,BD$. Xác định thiết diện của hình chóp cắt bởi mặt phẳng $\left( \alpha \right).$

phân biệt không thẳng hàng.png


Tìm $\left( \alpha \right) \cap \left( {ABCD} \right)$:
Ta có: $\left\{ \begin{array}{l}
M \in \left( \alpha \right) \cap \left( {ABCD} \right)\\
BD\parallel \left( \alpha \right)\\
\left( {ABCD} \right) \supset BD
\end{array} \right.$ $ \Rightarrow \left( \alpha \right) \cap \left( {ABCD} \right) = MN$ $\left( 1 \right)$ với $MN\parallel BD$ $\left( {N \in AB} \right)$ ($N$ là trung điểm của $AB$).
Tìm $\left( \alpha \right) \cap \left( {SAD} \right)$:
Ta có: $\left\{ \begin{array}{l}
M \in \left( \alpha \right) \cap \left( {SAD} \right)\\
SA\parallel \left( \alpha \right)\\
\left( {SAD} \right) \supset SA
\end{array} \right.$ $ \Rightarrow \left( \alpha \right) \cap \left( {SAD} \right) = MR$ $\left( 2 \right)$ với $MR\parallel SA$ $\left( {R \in SD} \right)$ ($R$ là trung điểm của $SD$).
Tìm $\left( \alpha \right) \cap \left( {SAB} \right)$:
Ta có: $\left\{ \begin{array}{l}
N \in \left( \alpha \right) \cap \left( {SAB} \right)\\
SA\parallel \left( \alpha \right)\\
\left( {SAB} \right) \supset SA
\end{array} \right.$ $ \Rightarrow \left( \alpha \right) \cap \left( {SCD} \right) = NP$ $\left( 3 \right)$ với $NP\parallel SA$ $\left( {P \in SB} \right)$ ($P$ là trung điểm của $SB$).
Tìm $\left( \alpha \right) \cap SC$:
Gọi $I$ là giao điểm của $MN$ với $AC.$
Chọn mặt phẳng phụ $\left( {SAC} \right) \supset SC.$
Tìm $\left( \alpha \right) \cap \left( {SAC} \right)$:
Ta có: $\left\{ \begin{array}{l}
I \in \left( \alpha \right) \cap \left( {SAC} \right)\\
SA\parallel \left( \alpha \right)\\
\left( {SAC} \right) \supset SA
\end{array} \right.$ $ \Rightarrow \left( \alpha \right) \cap \left( {SAC} \right) = IQ$ với $IQ\parallel SA$ $\left( {Q \in SC} \right).$
Suy ra $\left( \alpha \right) \cap SC = Q.$
Do đó ta có:
$\left( \alpha \right) \cap \left( {SCD} \right) = RQ$ $\left( 4 \right).$
$\left( \alpha \right) \cap \left( {SCB} \right) = PQ$ $\left( 5 \right).$
Từ $\left( 1 \right),\left( 2 \right),\left( 3 \right),\left( 4 \right),\left( 5 \right)$ suy ra thiết diện cần tìm là ngũ giác $MNPQR.$
 

Members online

No members online now.
Back
Top