Dạng 4. Phương trình bậc bốn dạng ${\left( {x + a} \right)^4} + {\left( {x + b} \right)^4} = c$

Tăng Giáp

Administrator
Thành viên BQT
Dạng 4. Phương trình bậc bốn dạng ${\left( {x + a} \right)^4} + {\left( {x + b} \right)^4} = c$ với $(c<0).$

Đặt $x = y – \frac{{a + b}}{2}$, phương trình trở thành: ${\left( {y + \frac{{a – b}}{2}} \right)^4} + {\left( {y – \frac{{a – b}}{2}} \right)^4} = c.$
Sử dụng khai triển nhị thức bậc $4$, ta thu được phương trình: $2{y^4} + 3{\left( {a – b} \right)^2}{y^2} + 2{\left( {\frac{{a – b}}{2}} \right)^4} = c.$
Giải phương trình trùng phương ẩn $y$ để tìm $x.$

Ví dụ 4. Giải phương trình: ${\left( {x + 2} \right)^4} + {\left( {x + 4} \right)^4} = 82.$

Đặt $y=x+3$, phương trình trở thành: ${\left( {y + 1} \right)^4} + {\left( {y – 1} \right)^4} = 82$ $ \Leftrightarrow \left( {{y^4} + 4{y^3} + 6{y^2} + 4y + 1} \right)$$\left( {{y^4} – 4{y^3} + 6{y^2} – 4y + 1} \right) = 82$ $ \Leftrightarrow 2{y^4} + 12{y^2} – 80 = 0$ $ \Leftrightarrow \left( {{y^2} – 4} \right)\left( {{y^2} + 10} \right) = 0$ $ \Leftrightarrow {y^2} = 4 $ $\Leftrightarrow y = \pm 2.$
Với $y=2$, ta được $x=-1.$
Với $y=-2$, ta được $x=-5.$
Vậy phương trình có tập nghiệm $S = \left\{ { – 1; – 5} \right\}.$
 

Members online

No members online now.
Back
Top