1. Phương pháp
Hiệu suất truyền tải điện năng khi thay đổi U và giữ cố định các đại lượng còn lại: $H = 1 - \frac{{\Delta P}}{P} = 1 - \frac{{PR}}{{{{\left( {U\cos \varphi } \right)}^2}}} \to \frac{{PR}}{{{{\left( {U\cos \varphi } \right)}^2}}} = 1 - H$
Ví dụ 1:
Người ta truyền tải dòng điện xoay chiều một pha từ nhà máy điện đến nơi tiêu thụ. Khi điện áp ở nhà máy điện là 6 kV thì hiệu suất truyền tải điện 73%. Để hiệu suất truyền tải là 97% thì điện áp ở nhà máy điện là
A. 24 kV.
B. 54 kV.
C. 16 kV.
D. 18 kV.
Chọn D
Ví dụ 2:
Xét truyền tải điện trên một đường dây nhất định. Nếu điện áp truyền tải điện là 2 kV thì hiệu suất truyền tải là 80 %. Nếu tăng điện áp truyền tải lên 4 kV thì hiệu suất truyền tải đạt
A. 95%.
B. 90%.
C. 97%.
D. 85%.
Chọn A
Ví dụ 3:
Hiệu suất truyền tải điện năng một công suất P từ máy phát điện đến nới tiêu thụ điện là 35%. Dùng máy biến áp lí tưởng có tỉ số giữa cuộn sơ cấp và cuộn thứ cấp là $\frac{{{N_2}}}{{{N_1}}}$ = 5 để tăng điện áp truyền tải. Hiệu suất truyền tải điện sau khi sử dụng máy biến áp là
A. 99,2%.
B. 97,4%.
C. 45,7%.
D. 32,8%.
Chọn B
Bài tập về nhà
Hiệu suất truyền tải điện năng khi thay đổi U và giữ cố định các đại lượng còn lại: $H = 1 - \frac{{\Delta P}}{P} = 1 - \frac{{PR}}{{{{\left( {U\cos \varphi } \right)}^2}}} \to \frac{{PR}}{{{{\left( {U\cos \varphi } \right)}^2}}} = 1 - H$
- Với $U_1$ và $H_1$ thì $\frac{{PR}}{{{{\left( {{U_1}\cos \varphi } \right)}^2}}} = 1 - {H_1}$ (1)
- Với $U_2$ và $H_2$ thì $\frac{{PR}}{{{{\left( {{U_2}\cos \varphi } \right)}^2}}} = 1 - {H_2}$ (2)
- (1) và (2), ta có: $\frac{{1 - {H_1}}}{{1 - {H_2}}} = \frac{{\frac{{PR}}{{{{\left( {{U_1}\cos \varphi } \right)}^2}}}}}{{\frac{{PR}}{{{{\left( {{U_2}\cos \varphi } \right)}^2}}}}} \to {\left( {\frac{{{U_2}}}{{{U_1}}}} \right)^2} = \frac{{1 - {H_1}}}{{1 - {H_2}}}$
Ví dụ 1:
Người ta truyền tải dòng điện xoay chiều một pha từ nhà máy điện đến nơi tiêu thụ. Khi điện áp ở nhà máy điện là 6 kV thì hiệu suất truyền tải điện 73%. Để hiệu suất truyền tải là 97% thì điện áp ở nhà máy điện là
A. 24 kV.
B. 54 kV.
C. 16 kV.
D. 18 kV.
Lời giải
${\left( {\frac{{{U_2}}}{{{U_1}}}} \right)^2} = \frac{{1 - {H_1}}}{{1 - {H_2}}} \to {\left( {\frac{{{U_2}}}{6}} \right)^2} = \frac{{1 - 0,93}}{{1 - 0,97}} \to {U_2} = 18\left( {kV} \right)$Chọn D
Ví dụ 2:
Xét truyền tải điện trên một đường dây nhất định. Nếu điện áp truyền tải điện là 2 kV thì hiệu suất truyền tải là 80 %. Nếu tăng điện áp truyền tải lên 4 kV thì hiệu suất truyền tải đạt
A. 95%.
B. 90%.
C. 97%.
D. 85%.
Lời giải
${\left( {\frac{{{U_2}}}{{{U_1}}}} \right)^2} = \frac{{1 - {H_1}}}{{1 - {H_2}}} \to {\left( {\frac{4}{2}} \right)^2} = \frac{{1 - 0,8}}{{1 - {H_2}}} \to {H_2} = 0,95$Chọn A
Ví dụ 3:
Hiệu suất truyền tải điện năng một công suất P từ máy phát điện đến nới tiêu thụ điện là 35%. Dùng máy biến áp lí tưởng có tỉ số giữa cuộn sơ cấp và cuộn thứ cấp là $\frac{{{N_2}}}{{{N_1}}}$ = 5 để tăng điện áp truyền tải. Hiệu suất truyền tải điện sau khi sử dụng máy biến áp là
A. 99,2%.
B. 97,4%.
C. 45,7%.
D. 32,8%.
Lời giải
${\left( {\frac{{{U_1}}}{{{U_2}}}} \right)^2} = \frac{{1 - {H_2}}}{{1 - {H_1}}} \to {\left( {\frac{1}{5}} \right)^2} = \frac{{1 - {H_2}}}{{1 - 0,35}} \to {H_2} = 0,974$Chọn B
Bài tập về nhà
- Máy biến áp lí tưởng: tải đề -- tải đáp án.
- Máy biến áp không lí tưởng: tải đề -- tải đáp án.
- Truyền tải điện năng đi xa: tải đề -- tải đáp án.
Chỉnh sửa cuối: