Trên cơ sở đưa tam thức bậc hai về dạng chính tắc và dùng các công thức sau:
1. $\int {\frac{{xdx}}{{\sqrt {{x^2} \pm a} }}} = \sqrt {{x^2} \pm a} + C.$
2. $\int {\frac{{dx}}{{\sqrt {{x^2} \pm a} }}} = \ln \left| {x + \sqrt {{x^2} \pm a} } \right| + C.$
3. $\int {\sqrt {{x^2} \pm a} } dx$ $ = \frac{x}{2}\sqrt {{x^2} \pm a} $ $ \pm \frac{a}{2}\ln \left| {x + \sqrt {{x^2} \pm a} } \right|$ $ + C.$
Ví dụ 1: Tìm nguyên hàm các hàm số chứa căn thức sau:
a) $\int {\frac{{xdx}}{{\sqrt {{x^2} + 1} }}} .$
b) $\int {\frac{{(2x + 1)dx}}{{\sqrt {2{x^2} + 2x} }}} .$
a) Ta có thể lựa chọn các cách trình bày sau:
Cách 1: Ta biến đổi: $\int {\frac{{xdx}}{{\sqrt {{x^2} + 1} }}} $ $ = \int {\frac{{d\left( {{x^2} + 1} \right)}}{{2\sqrt {{x^2} + 1} }}} $ $ = \sqrt {{x^2} + 1} + C.$
Cách 2: Đặt $u = {x^2} + 1$, suy ra: $du = 2xdx$ $ \Leftrightarrow xdx = \frac{1}{2}du.$
Từ đó: $\int {\frac{{xdx}}{{\sqrt {{x^2} + 1} }}} $ $ = \int {\frac{{du}}{{2\sqrt u }}} $ $ = \sqrt u + C$ $ = \sqrt {{x^2} + 1} + C.$
Cách 3: Đặt $u = \sqrt {{x^2} + 1} $, suy ra: ${u^2} = {x^2} + 1$ $ \Rightarrow 2udu = 2xdx$ $ \Leftrightarrow xdx = udu.$
Từ đó: $\int {\frac{{xdx}}{{\sqrt {{x^2} + 1} }}} = \int {\frac{{udu}}{u}} $ $ = \int {du} = u + C$ $ = \sqrt {{x^2} + 1} + C.$
b) Ta có thể lựa chọn các cách trình bày sau:
Cách 1: Ta biến đổi: $\int {\frac{{(2x + 1)dx}}{{\sqrt {2{x^2} + 2x} }}} $ $ = \int {\frac{{d\left( {2{x^2} + 2x} \right)}}{{2\sqrt {2{x^2} + 2x} }}} $ $ = \sqrt {2{x^2} + 2x} + C.$
Cách 2: Đặt $u = 2{x^2} + 2x$, suy ra: $du = (4x + 2)dx$ $ = 2(2x + 1)dx$ $ \Leftrightarrow (2x + 1)dx = \frac{1}{2}du.$
Từ đó: $\int {\frac{{(2x + 1)dx}}{{\sqrt {2{x^2} + 2x} }}} $ $ = \int {\frac{{du}}{{2\sqrt u }}} $ $ = \sqrt u + C$ $ = \sqrt {2{x^2} + 2x} + C.$
Cách 3: Đặt: $u = \sqrt {2{x^2} + 2x} $, suy ra: ${u^2} = 2{x^2} + 2x$ $ \Rightarrow 2udu = (4x + 2)dx$ $ = 2(2x + 1)dx$ $ \Leftrightarrow (2x + 1)dx = udu.$
Từ đó: $\int {\frac{{(2x + 1)dx}}{{\sqrt {2{x^2} + 2x} }}} $ $ = \int {\frac{{udu}}{u}} $ $ = \int d u = u + C$ $ = \sqrt {2{x^2} + 2x} + C.$
Ví dụ 2: Tìm nguyên hàm các hàm số chứa căn thức sau:
a) $f(x) = \frac{1}{{\sqrt {{x^2} – a} }}.$
b) $f(x) = \frac{1}{{\sqrt {{x^2} – x – 1} }}.$
a) Đặt $t = x + \sqrt {{x^2} – a} $, suy ra: $dt = \left( {1 + \frac{x}{{\sqrt {{x^2} – a} }}} \right)dx$ $ = \frac{{\sqrt {{x^2} – a} + x}}{{\sqrt {{x^2} – a} }}dx$ $ = \frac{{tdx}}{{\sqrt {{x^2} – a} }}$ $ \Leftrightarrow \frac{{dx}}{{\sqrt {{x^2} – a} }} = \frac{{dt}}{t}.$
Khi đó: $\int f (x)dx$ $ = \int {\frac{{dx}}{{\sqrt {{x^2} – a} }}} $ $ = \int {\frac{{dt}}{t}} $ $ = \ln |t| + C$ $ = \ln \left| {x + \sqrt {{x^2} – a} } \right| + C.$
b) Ta có thể lựa chọn các cách trình bày sau:
Cách 1: Ta có: $\int f (x)dx$ $ = \int {\frac{{dx}}{{\sqrt {{x^2} – x – 1} }}} $ $ = \int {\frac{{dx}}{{\sqrt {{{\left( {x – \frac{1}{2}} \right)}^2} – \frac{5}{4}} }}} .$
Đặt $t = x – \frac{1}{2}$ $ \Rightarrow dt = dx.$
Khi đó: $\int f (x)dx$ $ = \int {\frac{{dt}}{{\sqrt {{t^2} – \frac{5}{4}} }}} $ $ = \ln \left| {t + \sqrt {{t^2} – \frac{5}{4}} } \right| + C$ $ = \ln \left| {x – \frac{1}{2} + \sqrt {{x^2} – x – 1} } \right| + C.$
Cách 2: Ta có: $\int f (x)dx$ $ = \int {\frac{{dx}}{{\sqrt {{x^2} – x – 1} }}} $ $ = \int {\frac{{dx}}{{\sqrt {{{\left( {x – \frac{1}{2}} \right)}^2} – \frac{5}{4}} }}} .$
Đặt $t = x – \frac{1}{2} + \sqrt {{x^2} – x – 1} $, suy ra: $dt = \left( {1 + \frac{{2x – 1}}{{2\sqrt {{x^2} – x – 1} }}} \right)dx$ $ = \left( {1 + \frac{{x – \frac{1}{2}}}{{\sqrt {{x^2} – x – 1} }}} \right)dx$ $ = \frac{{\left( {\sqrt {{x^2} – x – 1} + x – \frac{1}{2}} \right)dx}}{{\sqrt {{x^2} – x – 1} }}$ $ \Leftrightarrow \frac{{dx}}{{\sqrt {{x^2} – x – 1} }} = \frac{{dt}}{t}.$
Khi đó: $\int f (x)dx$ $ = \int {\frac{{dx}}{{\sqrt {{x^2} – x – 1} }}} $ $ = \int {\frac{{dt}}{t}} $ $ = \ln |t| + C$ $ = \ln \left| {x – \frac{1}{2} + \sqrt {{x^2} – x – 1} } \right| + C.$
Ví dụ 3: Biết rằng $\int {\frac{{dx}}{{\sqrt {{x^2} + 3} }}} $ $ = \ln \left( {x + \sqrt {{x^2} + 3} } \right) + C.$ Tìm nguyên hàm: $I = \int {\sqrt {{x^2} + 3} } dx.$
Sử dụng phương pháp nguyên hàm từng phần bằng cách đặt:
$\left\{ {\begin{array}{*{20}{l}}
{u = \sqrt {{x^2} + 3} }\\
{dv = dx}
\end{array}} \right.$ $ \Rightarrow \left\{ {\begin{array}{*{20}{l}}
{du = \frac{x}{{\sqrt {{x^2} + 3} }}dx}\\
{v = x}
\end{array}} \right.$
Khi đó: $I = x\sqrt {{x^2} + 3} – \int {\frac{{{x^2}dx}}{{\sqrt {{x^2} + 3} }}} $ $ = x\sqrt {{x^2} + 3} – \int {\frac{{\left( {{x^2} + 3 – 3} \right)dx}}{{\sqrt {{x^2} + 3} }}} $ $ = x\sqrt {{x^2} + 3} $ $ – \int {\sqrt {{x^2} + 3} } dx$ $ + \int {\frac{{3dx}}{{\sqrt {{x^2} + 3} }}} .$
$ \Leftrightarrow 2I = x\sqrt {{x^2} + 3} $ $ + 3\ln \left( {x + \sqrt {{x^2} + 3} } \right) + C.$
$ \Leftrightarrow I = \frac{1}{2}x\sqrt {{x^2} + 3} $ $ + \frac{3}{2}\ln \left( {x + \sqrt {{x^2} + 3} } \right) + C.$
Chú ý: Với các em học sinh đã kinh nghiệm trong việc tính nguyên hàm có thể trình bày theo cách sau:
$\sqrt {{x^2} + 3} $ $ = \frac{1}{2} \cdot \frac{{2{x^2} + 6}}{{\sqrt {{x^2} + 3} }}$ $ = \frac{1}{2} \cdot \left( {\sqrt {{x^2} + 3} + \frac{{{x^2}}}{{\sqrt {{x^2} + 3} }}} \right)$ $ + \frac{3}{2} \cdot \frac{1}{{\sqrt {{x^2} + 3} }}$ $ = \frac{1}{2} \cdot {\left( {x\sqrt {{x^2} + 3} } \right)^\prime } + \frac{3}{2} \cdot \frac{1}{{\sqrt {{x^2} + 3} }}.$
Khi đó: $I = \frac{1}{2}\int {{{\left( {x\sqrt {{x^2} + 3} } \right)}^\prime }} dx$ $ + \frac{3}{2}\int {\frac{{dx}}{{\sqrt {{x^2} + 3} }}} $ $ = \frac{1}{2}x\sqrt {{x^2} + 3} $ $ + \frac{3}{2}\ln \left( {x + \sqrt {{x^2} + 3} } \right) + C.$
Ví dụ 4: Tìm nguyên hàm của hàm số $f(x) = \frac{{{x^2}}}{{\sqrt {{x^2} + 1} }}.$
Ta có: $\int f (x)dx$ $ = \int {\frac{{{x^2}dx}}{{\sqrt {{x^2} + 1} }}} $ $ = \int {\frac{{\left[ {\left( {{x^2} + 1} \right) – 1} \right]dx}}{{\sqrt {{x^2} + 1} }}} $ $ = \int {\left( {\sqrt {{x^2} + 1} – \frac{1}{{\sqrt {{x^2} + 1} }}} \right)dx} $ $ = \int {\sqrt {{x^2} + 1} } dx$ $ – \int {\frac{{dx}}{{\sqrt {{x^2} + 1} }}} $ $ = \frac{x}{2}\sqrt {{x^2} + 1} $ $ + \frac{1}{2}\ln \left| {x + \sqrt {{x^2} + 1} } \right|$ $ – \ln \left| {x + \sqrt {{x^2} + 1} } \right| + C$ $ = \frac{x}{2}\sqrt {{x^2} + 1} $ $ – \frac{1}{2}\ln \left| {x + \sqrt {{x^2} + 1} } \right| + C.$
1. $\int {\frac{{xdx}}{{\sqrt {{x^2} \pm a} }}} = \sqrt {{x^2} \pm a} + C.$
2. $\int {\frac{{dx}}{{\sqrt {{x^2} \pm a} }}} = \ln \left| {x + \sqrt {{x^2} \pm a} } \right| + C.$
3. $\int {\sqrt {{x^2} \pm a} } dx$ $ = \frac{x}{2}\sqrt {{x^2} \pm a} $ $ \pm \frac{a}{2}\ln \left| {x + \sqrt {{x^2} \pm a} } \right|$ $ + C.$
Ví dụ 1: Tìm nguyên hàm các hàm số chứa căn thức sau:
a) $\int {\frac{{xdx}}{{\sqrt {{x^2} + 1} }}} .$
b) $\int {\frac{{(2x + 1)dx}}{{\sqrt {2{x^2} + 2x} }}} .$
a) Ta có thể lựa chọn các cách trình bày sau:
Cách 1: Ta biến đổi: $\int {\frac{{xdx}}{{\sqrt {{x^2} + 1} }}} $ $ = \int {\frac{{d\left( {{x^2} + 1} \right)}}{{2\sqrt {{x^2} + 1} }}} $ $ = \sqrt {{x^2} + 1} + C.$
Cách 2: Đặt $u = {x^2} + 1$, suy ra: $du = 2xdx$ $ \Leftrightarrow xdx = \frac{1}{2}du.$
Từ đó: $\int {\frac{{xdx}}{{\sqrt {{x^2} + 1} }}} $ $ = \int {\frac{{du}}{{2\sqrt u }}} $ $ = \sqrt u + C$ $ = \sqrt {{x^2} + 1} + C.$
Cách 3: Đặt $u = \sqrt {{x^2} + 1} $, suy ra: ${u^2} = {x^2} + 1$ $ \Rightarrow 2udu = 2xdx$ $ \Leftrightarrow xdx = udu.$
Từ đó: $\int {\frac{{xdx}}{{\sqrt {{x^2} + 1} }}} = \int {\frac{{udu}}{u}} $ $ = \int {du} = u + C$ $ = \sqrt {{x^2} + 1} + C.$
b) Ta có thể lựa chọn các cách trình bày sau:
Cách 1: Ta biến đổi: $\int {\frac{{(2x + 1)dx}}{{\sqrt {2{x^2} + 2x} }}} $ $ = \int {\frac{{d\left( {2{x^2} + 2x} \right)}}{{2\sqrt {2{x^2} + 2x} }}} $ $ = \sqrt {2{x^2} + 2x} + C.$
Cách 2: Đặt $u = 2{x^2} + 2x$, suy ra: $du = (4x + 2)dx$ $ = 2(2x + 1)dx$ $ \Leftrightarrow (2x + 1)dx = \frac{1}{2}du.$
Từ đó: $\int {\frac{{(2x + 1)dx}}{{\sqrt {2{x^2} + 2x} }}} $ $ = \int {\frac{{du}}{{2\sqrt u }}} $ $ = \sqrt u + C$ $ = \sqrt {2{x^2} + 2x} + C.$
Cách 3: Đặt: $u = \sqrt {2{x^2} + 2x} $, suy ra: ${u^2} = 2{x^2} + 2x$ $ \Rightarrow 2udu = (4x + 2)dx$ $ = 2(2x + 1)dx$ $ \Leftrightarrow (2x + 1)dx = udu.$
Từ đó: $\int {\frac{{(2x + 1)dx}}{{\sqrt {2{x^2} + 2x} }}} $ $ = \int {\frac{{udu}}{u}} $ $ = \int d u = u + C$ $ = \sqrt {2{x^2} + 2x} + C.$
Ví dụ 2: Tìm nguyên hàm các hàm số chứa căn thức sau:
a) $f(x) = \frac{1}{{\sqrt {{x^2} – a} }}.$
b) $f(x) = \frac{1}{{\sqrt {{x^2} – x – 1} }}.$
a) Đặt $t = x + \sqrt {{x^2} – a} $, suy ra: $dt = \left( {1 + \frac{x}{{\sqrt {{x^2} – a} }}} \right)dx$ $ = \frac{{\sqrt {{x^2} – a} + x}}{{\sqrt {{x^2} – a} }}dx$ $ = \frac{{tdx}}{{\sqrt {{x^2} – a} }}$ $ \Leftrightarrow \frac{{dx}}{{\sqrt {{x^2} – a} }} = \frac{{dt}}{t}.$
Khi đó: $\int f (x)dx$ $ = \int {\frac{{dx}}{{\sqrt {{x^2} – a} }}} $ $ = \int {\frac{{dt}}{t}} $ $ = \ln |t| + C$ $ = \ln \left| {x + \sqrt {{x^2} – a} } \right| + C.$
b) Ta có thể lựa chọn các cách trình bày sau:
Cách 1: Ta có: $\int f (x)dx$ $ = \int {\frac{{dx}}{{\sqrt {{x^2} – x – 1} }}} $ $ = \int {\frac{{dx}}{{\sqrt {{{\left( {x – \frac{1}{2}} \right)}^2} – \frac{5}{4}} }}} .$
Đặt $t = x – \frac{1}{2}$ $ \Rightarrow dt = dx.$
Khi đó: $\int f (x)dx$ $ = \int {\frac{{dt}}{{\sqrt {{t^2} – \frac{5}{4}} }}} $ $ = \ln \left| {t + \sqrt {{t^2} – \frac{5}{4}} } \right| + C$ $ = \ln \left| {x – \frac{1}{2} + \sqrt {{x^2} – x – 1} } \right| + C.$
Cách 2: Ta có: $\int f (x)dx$ $ = \int {\frac{{dx}}{{\sqrt {{x^2} – x – 1} }}} $ $ = \int {\frac{{dx}}{{\sqrt {{{\left( {x – \frac{1}{2}} \right)}^2} – \frac{5}{4}} }}} .$
Đặt $t = x – \frac{1}{2} + \sqrt {{x^2} – x – 1} $, suy ra: $dt = \left( {1 + \frac{{2x – 1}}{{2\sqrt {{x^2} – x – 1} }}} \right)dx$ $ = \left( {1 + \frac{{x – \frac{1}{2}}}{{\sqrt {{x^2} – x – 1} }}} \right)dx$ $ = \frac{{\left( {\sqrt {{x^2} – x – 1} + x – \frac{1}{2}} \right)dx}}{{\sqrt {{x^2} – x – 1} }}$ $ \Leftrightarrow \frac{{dx}}{{\sqrt {{x^2} – x – 1} }} = \frac{{dt}}{t}.$
Khi đó: $\int f (x)dx$ $ = \int {\frac{{dx}}{{\sqrt {{x^2} – x – 1} }}} $ $ = \int {\frac{{dt}}{t}} $ $ = \ln |t| + C$ $ = \ln \left| {x – \frac{1}{2} + \sqrt {{x^2} – x – 1} } \right| + C.$
Ví dụ 3: Biết rằng $\int {\frac{{dx}}{{\sqrt {{x^2} + 3} }}} $ $ = \ln \left( {x + \sqrt {{x^2} + 3} } \right) + C.$ Tìm nguyên hàm: $I = \int {\sqrt {{x^2} + 3} } dx.$
Sử dụng phương pháp nguyên hàm từng phần bằng cách đặt:
$\left\{ {\begin{array}{*{20}{l}}
{u = \sqrt {{x^2} + 3} }\\
{dv = dx}
\end{array}} \right.$ $ \Rightarrow \left\{ {\begin{array}{*{20}{l}}
{du = \frac{x}{{\sqrt {{x^2} + 3} }}dx}\\
{v = x}
\end{array}} \right.$
Khi đó: $I = x\sqrt {{x^2} + 3} – \int {\frac{{{x^2}dx}}{{\sqrt {{x^2} + 3} }}} $ $ = x\sqrt {{x^2} + 3} – \int {\frac{{\left( {{x^2} + 3 – 3} \right)dx}}{{\sqrt {{x^2} + 3} }}} $ $ = x\sqrt {{x^2} + 3} $ $ – \int {\sqrt {{x^2} + 3} } dx$ $ + \int {\frac{{3dx}}{{\sqrt {{x^2} + 3} }}} .$
$ \Leftrightarrow 2I = x\sqrt {{x^2} + 3} $ $ + 3\ln \left( {x + \sqrt {{x^2} + 3} } \right) + C.$
$ \Leftrightarrow I = \frac{1}{2}x\sqrt {{x^2} + 3} $ $ + \frac{3}{2}\ln \left( {x + \sqrt {{x^2} + 3} } \right) + C.$
Chú ý: Với các em học sinh đã kinh nghiệm trong việc tính nguyên hàm có thể trình bày theo cách sau:
$\sqrt {{x^2} + 3} $ $ = \frac{1}{2} \cdot \frac{{2{x^2} + 6}}{{\sqrt {{x^2} + 3} }}$ $ = \frac{1}{2} \cdot \left( {\sqrt {{x^2} + 3} + \frac{{{x^2}}}{{\sqrt {{x^2} + 3} }}} \right)$ $ + \frac{3}{2} \cdot \frac{1}{{\sqrt {{x^2} + 3} }}$ $ = \frac{1}{2} \cdot {\left( {x\sqrt {{x^2} + 3} } \right)^\prime } + \frac{3}{2} \cdot \frac{1}{{\sqrt {{x^2} + 3} }}.$
Khi đó: $I = \frac{1}{2}\int {{{\left( {x\sqrt {{x^2} + 3} } \right)}^\prime }} dx$ $ + \frac{3}{2}\int {\frac{{dx}}{{\sqrt {{x^2} + 3} }}} $ $ = \frac{1}{2}x\sqrt {{x^2} + 3} $ $ + \frac{3}{2}\ln \left( {x + \sqrt {{x^2} + 3} } \right) + C.$
Ví dụ 4: Tìm nguyên hàm của hàm số $f(x) = \frac{{{x^2}}}{{\sqrt {{x^2} + 1} }}.$
Ta có: $\int f (x)dx$ $ = \int {\frac{{{x^2}dx}}{{\sqrt {{x^2} + 1} }}} $ $ = \int {\frac{{\left[ {\left( {{x^2} + 1} \right) – 1} \right]dx}}{{\sqrt {{x^2} + 1} }}} $ $ = \int {\left( {\sqrt {{x^2} + 1} – \frac{1}{{\sqrt {{x^2} + 1} }}} \right)dx} $ $ = \int {\sqrt {{x^2} + 1} } dx$ $ – \int {\frac{{dx}}{{\sqrt {{x^2} + 1} }}} $ $ = \frac{x}{2}\sqrt {{x^2} + 1} $ $ + \frac{1}{2}\ln \left| {x + \sqrt {{x^2} + 1} } \right|$ $ – \ln \left| {x + \sqrt {{x^2} + 1} } \right| + C$ $ = \frac{x}{2}\sqrt {{x^2} + 1} $ $ – \frac{1}{2}\ln \left| {x + \sqrt {{x^2} + 1} } \right| + C.$