Dạng toán 2. Tìm tâm vị tự của hai đường tròn

Tăng Giáp

Administrator
Thành viên BQT
Phương pháp: Sử dụng phương pháp tìm tâm vị tự của hai đường tròn đã trình bày ở phần A-4.

Ví dụ 3. Cho hai đường tròn $\left( C \right):{\left( {x – 2} \right)^2} + {\left( {y – 1} \right)^2} = 4$ và $\left( {C’} \right):{\left( {x – 8} \right)^2} + {\left( {y – 4} \right)^2} = 16$. Tìm tâm vị tự của hai đường tròn.

Ta có: Đường tròn $\left( C \right)$ có tâm $I\left( {1;2} \right)$, bán kính $R = 2$, đường tròn $\left( {C’} \right)$ có tâm $I’\left( {8;4} \right)$, bán kính $R’ = 4.$
Do $I \ne I’$ và $R \ne R’$ nên có hai phép vị tự ${V_{\left( {J;2} \right)}}$ và ${V_{\left( {J’; – 2} \right)}}$ biến $\left( C \right)$ thành $\left( {C’} \right).$
Gọi $J\left( {x;y} \right).$
Với $k = 2$, ta có: $\overrightarrow {JI’} = 2\overrightarrow {JI} $ $ \Leftrightarrow \left\{ \begin{array}{l}
8 – x = 2\left( {2 – x} \right)\\
4 – y = 2\left( {1 – y} \right)
\end{array} \right.$ $ \Leftrightarrow \left\{ \begin{array}{l}
x = – 4\\
y = – 2
\end{array} \right.$ $ \Rightarrow J\left( { – 4; – 2} \right).$
Tương tự với $k = – 2$, suy ra $J’\left( {4;2} \right).$
 

Members online

No members online now.
Back
Top