Ví dụ 3. Tìm tâm đối xứng của đường cong $\left( C \right)$ có phương trình $y={{x}^{3}}-3{{x}^{2}}+3$.
Lấy điểm $M\left( {x;y} \right) \in \left( C \right)$ $ \Rightarrow y = {x^3} – 3{x^2} + 3$ $\left( 1 \right).$
Gọi $I\left( a;b \right)$ là tâm đối xứng của $\left( C \right)$ và $M’\left( x’;y’ \right)$ là ảnh của $M$ qua phép đối xứng tâm $I$.
Ta có: $\left\{ \begin{array}{l}
x’ = 2a – x\\
y’ = 2b – y
\end{array} \right.$ $ \Leftrightarrow \left\{ \begin{array}{l}
x = 2a – x’\\
y = 2b – y’
\end{array} \right.$
Thay vào $\left( 1 \right)$ ta được $2b – y’$ $ = {\left( {2a – x’} \right)^3} – 3{\left( {2a – x’} \right)^2} + 3$ $ \Leftrightarrow y’ = {x’}^3 – 3{x’}^2 + 3 + (6 – 6a){x’}^2$ $ + \left( {12{a^2} – 12a} \right)x’ – 8{a^3} + 12{a^2} + 2b + 6$ $\left( 2 \right).$
Mặt khác $M’ \in \left( C \right)$ nên $y’ = {x’}^3 – 3{x’}^2 + 3$, do đó $\left( 2 \right)$ $ \Leftrightarrow (6 – 6a){x’}^2 + \left( {12{a^2} – 12a} \right)x’$ $ – 8{a^3} + 12{a^2} + 2b – 6{\rm{ }} = 0$, $\forall x’.$
$ \Leftrightarrow \left\{ \begin{array}{l}
6 – 6a = 0\\
12{a^2} – 12a = 0\\
– 8{a^3} + 12{a^2} + 2b – 6 = 0
\end{array} \right.$ $ \Leftrightarrow \left\{ \begin{array}{l}
a = 1\\
b = 1
\end{array} \right.$
Vậy $I\left( 1;1 \right)$ là tâm đối xứng của $\left( C \right)$.
Lấy điểm $M\left( {x;y} \right) \in \left( C \right)$ $ \Rightarrow y = {x^3} – 3{x^2} + 3$ $\left( 1 \right).$
Gọi $I\left( a;b \right)$ là tâm đối xứng của $\left( C \right)$ và $M’\left( x’;y’ \right)$ là ảnh của $M$ qua phép đối xứng tâm $I$.
Ta có: $\left\{ \begin{array}{l}
x’ = 2a – x\\
y’ = 2b – y
\end{array} \right.$ $ \Leftrightarrow \left\{ \begin{array}{l}
x = 2a – x’\\
y = 2b – y’
\end{array} \right.$
Thay vào $\left( 1 \right)$ ta được $2b – y’$ $ = {\left( {2a – x’} \right)^3} – 3{\left( {2a – x’} \right)^2} + 3$ $ \Leftrightarrow y’ = {x’}^3 – 3{x’}^2 + 3 + (6 – 6a){x’}^2$ $ + \left( {12{a^2} – 12a} \right)x’ – 8{a^3} + 12{a^2} + 2b + 6$ $\left( 2 \right).$
Mặt khác $M’ \in \left( C \right)$ nên $y’ = {x’}^3 – 3{x’}^2 + 3$, do đó $\left( 2 \right)$ $ \Leftrightarrow (6 – 6a){x’}^2 + \left( {12{a^2} – 12a} \right)x’$ $ – 8{a^3} + 12{a^2} + 2b – 6{\rm{ }} = 0$, $\forall x’.$
$ \Leftrightarrow \left\{ \begin{array}{l}
6 – 6a = 0\\
12{a^2} – 12a = 0\\
– 8{a^3} + 12{a^2} + 2b – 6 = 0
\end{array} \right.$ $ \Leftrightarrow \left\{ \begin{array}{l}
a = 1\\
b = 1
\end{array} \right.$
Vậy $I\left( 1;1 \right)$ là tâm đối xứng của $\left( C \right)$.