Dạng toán 4. Sử dụng phép vị tự để giải các bài toán tập hợp điểm

Tăng Giáp

Administrator
Thành viên BQT
Phương pháp: Để tìm tập hợp điểm $M$ ta có thể quy về tìm tập hợp điểm $N$ và tìm một phép vị tự ${{V}_{\left( I;k \right)}}$ nào đó sao cho ${{V}_{\left( I;k \right)}}\left( N \right)=M$ suy ra quỹ tích điểm $M$ là ảnh của quỹ tích $N$ qua ${{V}_{\left( I;k \right)}}$.

Ví dụ 6. Cho đường tròn $\left( O;R \right)$ và một điểm $I$ nằm ngoài đường tròn sao cho $OI=3R$, $A$ là một điểm thay đổi trên đường tròn $\left( O;R \right)$. Phân giác trong góc $\widehat{IOA}$ cắt $IA$ tại điểm $M$. Tìm tập hợp điểm $M$ khi $A$ di động trên $\left( O;R \right)$.

Dạng toán 4. Sử dụng phép vị tự để giải các bài toán tập hợp điểm.png


Theo tính chất đường phân giác ta có $\frac{{MI}}{{MA}} = \frac{{OI}}{{OA}} = \frac{{3R}}{R} = 3$ $ \Rightarrow IM = \frac{3}{4}IA$ $ \Rightarrow \overrightarrow {IM} = \frac{3}{4}\overrightarrow {IA} .$
Suy ra ${{V}_{\left( I;\frac{3}{4} \right)}}\left( A \right)=M$, mà $A$ thuộc đường tròn $\left( O;R \right)$ nên $M$ thuộc $\left( O’;\frac{3}{4}R \right)$ ảnh của $\left( O;R \right)$ qua ${{V}_{\left( I;\frac{3}{4} \right)}}$.
Vậy tập hợp điểm $M$ là $\left( O’;\frac{3}{4}R \right)$ ảnh của $\left( O;R \right)$ qua ${{V}_{\left( I;\frac{3}{4} \right)}}$.

Ví dụ 7. Cho tam giác $ABC$. Qua điểm $M$ trên cạnh $AB$ vẽ các đường song song với các đường trung tuyến $AE$ và $BF$, tương ứng cắt $BC$ và $CA$ tai $P,Q$ . Tìm tập hợp điểm $R$ sao cho $MPRQ$ là hình bình hành.

Dạng toán 4. Sử dụng phép vị tự để giải các bài toán tập hợp điểm.png


Gọi $I = MQ \cap AE$, $K = MP \cap BF$ và $G$ là trọng tâm của tam giác $ABC.$
Ta có: $\frac{{MI}}{{BG}} = \frac{{AM}}{{AB}} = \frac{{AQ}}{{AF}} = \frac{{IQ}}{{GF}}$ $ \Rightarrow \frac{{MI}}{{IQ}} = \frac{{BG}}{{GF}} = 2$ $ \Rightarrow \overrightarrow {MI} = \frac{2}{3}\overrightarrow {MQ} .$
Tương tự ta có $\overrightarrow {MK} = \frac{2}{3}\overrightarrow {MP} .$
Từ đó ta có $\overrightarrow {MG} = \overrightarrow {MI} + \overrightarrow {MK} $ $ = \frac{2}{3}\overrightarrow {MQ} + \frac{2}{3}\overrightarrow {MP} $ $ = \frac{2}{3}\overrightarrow {MR} .$
Do đó $\overrightarrow {GR} = – \frac{1}{2}\overrightarrow {GM} $ $ \Rightarrow {V_{\left( {G; – \frac{1}{2}} \right)}}\left( M \right) = R.$
Mà $M$ thuộc cạnh $AB$ nên $R$ thuộc ảnh của cạnh $AB$ qua ${{V}_{\left( G;-\frac{1}{2} \right)}}$ đoạn chính là đoạn $EF$.
Vậy tập hợp điểm $R$ là đoạn $EF$.
 

Attachments

  • Dạng toán 4. Sử dụng phép vị tự để giải các bài toán tập hợp điểm.png
    Dạng toán 4. Sử dụng phép vị tự để giải các bài toán tập hợp điểm.png
    9.1 KB · Đọc: 349
  • Dạng toán 4. Sử dụng phép vị tự để giải các bài toán tập hợp điểm.png
    Dạng toán 4. Sử dụng phép vị tự để giải các bài toán tập hợp điểm.png
    8.9 KB · Đọc: 350

Members online

No members online now.
Back
Top