Dạng toán 4: Tìm nguyên hàm của hàm số mũ và logarit bằng phương pháp lấy nguyên hàm từng phần.

Tăng Giáp

Administrator
Thành viên BQT
Chúng ta đã được biết trong phần xác định nguyên hàng bằng phương pháp nguyên hàm từng phần, đối với các dạng nguyên hàm:
Dạng 1: Tính: $\int {{e^{ax}}} \cos (bx)$ hoặc $\int {{e^{ax}}} \sin (bx)$ với $a,b \ne 0.$
Khi đó ta đặt: $\left\{ {\begin{array}{*{20}{l}}
{u = \cos (bx)}\\
{dv = {e^{ax}}dx}
\end{array}} \right.$ hoặc $\left\{ {\begin{array}{*{20}{l}}
{u = \sin (bx)}\\
{dv = {e^{ax}}dx}
\end{array}} \right.$
Ngoài ra cũng có thể sử dụng phương pháp hằng số bất định.
Dạng 2: Tính: $\int P (x){e^{\alpha x}}dx$ với $\alpha \in {R^*}.$
Khi đó ta đặt: $\left\{ {\begin{array}{*{20}{l}}
{u = P(x)}\\
{dv = {e^{\alpha x}}dx}
\end{array}} \right.$
Ngoài ra cũng có thể sử dụng phương pháp hằng số bất định.

Ví dụ 1: Tìm nguyên hàm $I = \int x \ln \frac{{1 – x}}{{1 + x}}dx.$

Đặt $\left\{ {\begin{array}{*{20}{l}}
{u = \ln \frac{{1 – x}}{{1 + x}}}\\
{dv = xdx}
\end{array}} \right.$ $ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
{du = \frac{{ – 1}}{{1 – {x^2}}}dx}\\
{v = \frac{1}{2}{x^2}}
\end{array}} \right.$
Khi đó: $I = \frac{1}{2}{x^2}\ln \frac{{1 – x}}{{1 + x}}$ $ + \int {\frac{{{x^2}}}{{2\left( {1 – {x^2}} \right)}}} dx$ $ = \frac{1}{2}{x^2}\ln \frac{{1 – x}}{{1 + x}}$ $ + \int {\left( {\frac{1}{{2\left( {1 – {x^2}} \right)}} – \frac{1}{2}} \right)} dx + C$ $ = \frac{1}{2}{x^2}\ln \frac{{1 – x}}{{1 + x}}$ $ + \frac{1}{4}\ln \left| {\frac{{1 + x}}{{1 – x}}} \right| – \frac{1}{2}x + C.$

Ví dụ 2: Tìm nguyên hàm của hàm số $f(x) = \left( {{{\tan }^2}x + \tan x + 1} \right){e^x}.$

Ta có: $\int f (x)dx$ $ = \int {\left( {{{\tan }^2}x + \tan x + 1} \right)} {e^x}$ $ = \int {\left( {{{\tan }^2}x + 1} \right)} {e^x} + \int {{e^x}} \tan xdx$ $(1).$
Xét tích phân $J = \int {{e^x}} \tan xdx$, đặt:
$\left\{ {\begin{array}{*{20}{l}}
{u = \tan x}\\
{dv = {e^x}dx}
\end{array}} \right.$ $ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
{du = \frac{{dx}}{{{{\cos }^2}x}} = \left( {1 + {{\tan }^2}x} \right)dx}\\
{v = {e^x}}
\end{array}} \right.$
Khi đó: $J = {e^x}\tan x – \int {\left( {{{\tan }^2}x + 1} \right)} {e^x}$ $(2).$
Thay $(2)$ vào $(1)$ ta được: $\int f (x)dx = {e^x}\tan x + C.$
 

Latest posts

Members online

No members online now.
Back
Top