Ở bài viết trước ta đã làm quen với công thức giải nhanh cấp số cộng, đó là những kiến thức quan trọng em cần phải nhớ. Kế thừa kiến thức đó, bài viết này sẽ bàn tới chủ đều sâu hơn về cấp số cộng.
Phương pháp: Tổng $n$ số hạng đầu tiên của cấp số cộng $(u_n)$ (có số hạng đầu tiên là $u_1$ và công sai $d$) được xác định bởi công thức: ${S_n} = {u_1} + {u_2} + … + {u_n}$ $ = \frac{n}{2}\left( {{u_1} + {u_n}} \right)$ $ = \frac{n}{2}\left[ {2{u_1} + \left( {n – 1} \right)d} \right].$
Ví dụ 11. Tính tổng $S = 105 + 110 + 115 + \ldots + 995.$
Xét cấp số cộng $\left( {{u_n}} \right)$ có ${u_1} = 105$ và công sai $d = 5$, ta có:
$995 = {u_n} = {u_1} + (n – 1)d$ $ = 105 + 5(n – 1)$ $ \Leftrightarrow n = 179.$
$S = {S_{179}} = \frac{{179}}{2}\left( {{u_1} + {u_{179}}} \right)$ $ = \frac{{179}}{2}\left( {105 + 995} \right) = 98450.$
Ví dụ 12. Tính tổng sau: $S = {100^2} – {99^2} + {98^2} – {97^2}$ $ + \ldots + {2^2} – {1^2}.$
Viết lại tổng $S$ dưới dạng: $S = 199 + 195 + \ldots + 3.$
Xét cấp số cộng $\left( {{u_n}} \right)$ có ${u_1} = 199$ và công sai $d = – 4$, ta có:
$3 = {u_n} = {u_1} + (n – 1)d$ $ = 199 – 4(n – 1)$ $ \Leftrightarrow n = 50.$
$S = {S_{50}} = \frac{{50}}{2}\left( {{u_1} + {u_{50}}} \right)$ $ = \frac{{50}}{2}\left( {199 + 3} \right) = 5050.$
Phương pháp: Tổng $n$ số hạng đầu tiên của cấp số cộng $(u_n)$ (có số hạng đầu tiên là $u_1$ và công sai $d$) được xác định bởi công thức: ${S_n} = {u_1} + {u_2} + … + {u_n}$ $ = \frac{n}{2}\left( {{u_1} + {u_n}} \right)$ $ = \frac{n}{2}\left[ {2{u_1} + \left( {n – 1} \right)d} \right].$
Ví dụ 11. Tính tổng $S = 105 + 110 + 115 + \ldots + 995.$
Xét cấp số cộng $\left( {{u_n}} \right)$ có ${u_1} = 105$ và công sai $d = 5$, ta có:
$995 = {u_n} = {u_1} + (n – 1)d$ $ = 105 + 5(n – 1)$ $ \Leftrightarrow n = 179.$
$S = {S_{179}} = \frac{{179}}{2}\left( {{u_1} + {u_{179}}} \right)$ $ = \frac{{179}}{2}\left( {105 + 995} \right) = 98450.$
Ví dụ 12. Tính tổng sau: $S = {100^2} – {99^2} + {98^2} – {97^2}$ $ + \ldots + {2^2} – {1^2}.$
Viết lại tổng $S$ dưới dạng: $S = 199 + 195 + \ldots + 3.$
Xét cấp số cộng $\left( {{u_n}} \right)$ có ${u_1} = 199$ và công sai $d = – 4$, ta có:
$3 = {u_n} = {u_1} + (n – 1)d$ $ = 199 – 4(n – 1)$ $ \Leftrightarrow n = 50.$
$S = {S_{50}} = \frac{{50}}{2}\left( {{u_1} + {u_{50}}} \right)$ $ = \frac{{50}}{2}\left( {199 + 3} \right) = 5050.$
Last edited by a moderator: