Dạng 1: Thiết diện của hình đa diện với mặt phẳng $\left( \alpha \right)$ biết $\left( \alpha \right)$ đi qua ba điểm phân biệt không thẳng hàng.
Phương pháp:
+ Xác định giao tuyến của mặt phẳng $\left( \alpha \right)$ với từng mặt của hình đa diện.
+ Nối các đoạn giao tuyến lại ta được thiết diện cần tìm.
Ví dụ 1: Cho tứ diện $ABCD$. Gọi $I$ và $J$ lần lượt là trung điểm của $BC$ và $BD$; $E$ là một điểm thuộc cạnh $AD$ khác với $A$ và $D$. Xác định thiết diện của hình tứ diện khi cắt bởi mặt phẳng $\left( IJE \right)$.
Ta có:
$\left( {IJE} \right) \cap \left( {BCD} \right) = IJ$ $\left( 1 \right).$
$\left( {IJE} \right) \cap \left( {ABD} \right) = EJ$ $\left( 2 \right).$
Tìm $\left( {IJE} \right) \cap \left( {ACD} \right)$:
$E \in \left( {IJE} \right) \cap \left( {ACD} \right).$
$IJ \subset \left( {IJE} \right)$, $CD \subset \left( {ACD} \right).$
Vì $IJ$ là đường trung bình của tam giác $BCD$ nên $IJ//CD$ $ \Rightarrow \left( {IJE} \right) \cap \left( {ACD} \right) = Ex$ với $Ex$ là đường thẳng đi qua $E$ và song song với $IJ$ và $CD.$
Gọi $F = Ex \cap AC.$
Khi đó: $\left( {IJE} \right) \cap \left( {ACD} \right) = EF$ $\left( 3 \right).$
Ta có: $\left( {IJE} \right) \cap \left( {ABC} \right) = IF$ $\left( 4 \right).$
Từ $\left( 1 \right),\left( 2 \right),\left( 3 \right),\left( 4 \right)$ suy ra thiết diện của hình tứ diện $ABCD$ khi cắt bởi mặt phẳng $\left( IJE \right)$ là hình thang $IJEF.$
Ví dụ 2: Cho hình lăng trụ $ABC.A’B’C’$. Gọi $M,N$ lần lượt là trung điểm của $A’B’$, $CC’$. Dựng thiết diện của hình lăng trụ với mặt phẳng $\left( {AMN} \right).$
Ta có:
$\left( {AMN} \right) \cap \left( {ABB’A’} \right) = AM$ $\left( 1 \right).$
$\left( {AMN} \right) \cap \left( {ACC’A’} \right) = AN$ $\left( 2 \right).$
Tìm $\left( {AMN} \right) \cap \left( {A’B’C’} \right):$
$M \in \left( {AMN} \right) \cap \left( {A’B’C’} \right).$
Gọi $P = AN \cap A’C’$ $ \Rightarrow P \in \left( {AMN} \right) \cap \left( {A’B’C’} \right).$
Suy ra $\left( {AMN} \right) \cap \left( {A’B’C’} \right)$ $ = MP = MQ$ (với $Q = MP \cap B’C’$) $\left( 3 \right).$
Khi đó: $\left( {AMN} \right) \cap \left( {BCC’B’} \right) = NQ$ $\left( 4 \right).$
Từ $\left( 1 \right),\left( 2 \right),\left( 3 \right),\left( 4 \right)$ suy ra thiết diện là tứ giác $AMQN.$
Phương pháp:
+ Xác định giao tuyến của mặt phẳng $\left( \alpha \right)$ với từng mặt của hình đa diện.
+ Nối các đoạn giao tuyến lại ta được thiết diện cần tìm.
Ví dụ 1: Cho tứ diện $ABCD$. Gọi $I$ và $J$ lần lượt là trung điểm của $BC$ và $BD$; $E$ là một điểm thuộc cạnh $AD$ khác với $A$ và $D$. Xác định thiết diện của hình tứ diện khi cắt bởi mặt phẳng $\left( IJE \right)$.
Ta có:
$\left( {IJE} \right) \cap \left( {BCD} \right) = IJ$ $\left( 1 \right).$
$\left( {IJE} \right) \cap \left( {ABD} \right) = EJ$ $\left( 2 \right).$
Tìm $\left( {IJE} \right) \cap \left( {ACD} \right)$:
$E \in \left( {IJE} \right) \cap \left( {ACD} \right).$
$IJ \subset \left( {IJE} \right)$, $CD \subset \left( {ACD} \right).$
Vì $IJ$ là đường trung bình của tam giác $BCD$ nên $IJ//CD$ $ \Rightarrow \left( {IJE} \right) \cap \left( {ACD} \right) = Ex$ với $Ex$ là đường thẳng đi qua $E$ và song song với $IJ$ và $CD.$
Gọi $F = Ex \cap AC.$
Khi đó: $\left( {IJE} \right) \cap \left( {ACD} \right) = EF$ $\left( 3 \right).$
Ta có: $\left( {IJE} \right) \cap \left( {ABC} \right) = IF$ $\left( 4 \right).$
Từ $\left( 1 \right),\left( 2 \right),\left( 3 \right),\left( 4 \right)$ suy ra thiết diện của hình tứ diện $ABCD$ khi cắt bởi mặt phẳng $\left( IJE \right)$ là hình thang $IJEF.$
Ví dụ 2: Cho hình lăng trụ $ABC.A’B’C’$. Gọi $M,N$ lần lượt là trung điểm của $A’B’$, $CC’$. Dựng thiết diện của hình lăng trụ với mặt phẳng $\left( {AMN} \right).$
Ta có:
$\left( {AMN} \right) \cap \left( {ABB’A’} \right) = AM$ $\left( 1 \right).$
$\left( {AMN} \right) \cap \left( {ACC’A’} \right) = AN$ $\left( 2 \right).$
Tìm $\left( {AMN} \right) \cap \left( {A’B’C’} \right):$
$M \in \left( {AMN} \right) \cap \left( {A’B’C’} \right).$
Gọi $P = AN \cap A’C’$ $ \Rightarrow P \in \left( {AMN} \right) \cap \left( {A’B’C’} \right).$
Suy ra $\left( {AMN} \right) \cap \left( {A’B’C’} \right)$ $ = MP = MQ$ (với $Q = MP \cap B’C’$) $\left( 3 \right).$
Khi đó: $\left( {AMN} \right) \cap \left( {BCC’B’} \right) = NQ$ $\left( 4 \right).$
Từ $\left( 1 \right),\left( 2 \right),\left( 3 \right),\left( 4 \right)$ suy ra thiết diện là tứ giác $AMQN.$