Recent Content by Khải Minh

  1. Khải Minh

    Nâng cao Ứng dụng tích phân tính diện tích và thể tích

    Tính thể tích V của khối tròn xoay tạo thành khi quay quanh trục Ox hình phẳng được giới hạn bởi đồ thị hàm số \(y = (2 - x){e^{\frac{x}{2}}}\) và hai trục tọa độ. A. \(V = 2{e^2} - 10\) B. \(V = 2{e^2} + 10\) C. \(V = \pi (2{e^2} - 10)\) D. \(V = \pi \left( {2{e^2} + 10} \right)\)
  2. Khải Minh

    Phương pháp tọa độ Oxyz trong không gian

    Tìm tọa độ vectơ \(\overrightarrow u\) biết rằng \(\overrightarrow a + \overrightarrow u = \overrightarrow 0\) và \(\overrightarrow a = \left( {1; - 2;1} \right)\). A. \(\overrightarrow u = \left( {1; - 2;8} \right)\) B. \(\overrightarrow u = \left( {6; - 4; - 6} \right)\) C...
  3. Khải Minh

    Chuyên đề hàm số lũy thừa

    Ông Việt dự định gửi vào ngân hàng một số tiền với lãi suất 6,5% một năm. Biết rằng, cứ sau mỗi năm số tiền lãi sẽ được nhập vào vốn ban đầu. Tính số tiền tối thiểu x (triệu đồng, \(x\in \mathbb{N}\)) ông Việt gửi vào ngân hàng để sau 3 năm số tiền lãi...
  4. Khải Minh

    Trắc nghiệm về Xác định Góc Và Khoảng Cách Trong Khối đa Diện

    Cho hình chóp S.ABC có đáy là tam giác đều cạnh 2a, D là trung điểm BC. Biết SAD là tam giác đều và mặt phẳng (SAD) vuông góc với mặt phẳng (ABC). Tính khoảng cách từ C đến mặt phẳng (SAB). A. \(\frac{{6\sqrt {13} a}}{{13}}\) B. \(\frac{{6\sqrt {13} a}}{7}\) C...
  5. Khải Minh

    Nâng cao Cực đại và cực tiểu của hàm số

    Tìm giá trị thực của tham số m để hàm số y = {x^3} - 3{x^2} + mx - 1 có hai điểm cực trị thỏa mãn \({x_1}^2 + {x_2}^2 = 6.\) A. m = -1 B. m = 3 C. m = 1 D. m = -3
  6. Khải Minh

    Bài 5. CHUYỂN ĐỘNG TRÒN ĐỀU

    Cho các dữ kiện sau: Bán kính Trái Đất là $R=6400km$. Khoảng cách từ Trái Đất đến Mặt Trăng là $384000km$ Thời gian Mặt Trăng quay một vòng quanh Trái Đất: $2,35.10^{6}s$ Hãy tính: a) Gia tốc hướng tâm của một điểm ở xích đạo. b) Gia tốc hướng tâm của Mặt Trăng trong chuyển động quanh Trái Đất.
  7. Khải Minh

    Bài 5. CHUYỂN ĐỘNG TRÒN ĐỀU

    Đĩa của một xe đạp có đường kính gấp 2 lần đường kính của líp. Bánh xe có đường kính là 0,660m. Một người đạp xe với vận tốc 15km/h. Nếu người đó đạp đều đặn không ngừng chân thì phải đạp bao nhiêu vòng trong một phút?
  8. Khải Minh

    Bài 3. Chuyển động thẳng biến đổi đều

    Một viên bi thả lăn nhanh dần đều trên một mặt phẳng nghiêng với gia tốc $0,2m/s^2$, vận tốc ban đầu bằng không. a) Sau bao lâu viên bi đạt vận tốc $1$m/s. b) Viết công thức tính đường đi của viên bi và quãng đường bi lăn được trong $10$ giây đầu tiên.
  9. Khải Minh

    Bài 3. Chuyển động thẳng biến đổi đều

    Lúc $6$h sáng một ô tô khởi hành từ địa điểm $A$ đi về phía địa điểm $B$ cách $A$ $300$m, chuyển động nhanh dần đều với gia tốc $0,4$m/s$^2$. $10$s sau một xe đạp khởi hành từ $B$ đi cùng chiều với ô tô. Lúc $6$h$50$s thì ô tô đuổi kịp xe đạp. Tính vận tốc xe đạp và tìm khoảng cách hai xe lúc...
  10. Khải Minh

    Bài 2. CHUYỂN ĐỘNG THẲNG ĐỀU

    Hai vật bắt đầu chuyển động từ hai điểm A và B cách nhau $60$m trên một đường thẳng, theo hai hướng ngược nhau để gặp nhau. Vận tốc của vật di từ A gấp đôi vận tốc của vật đi từ B, sau $4$s thì hai vật gặp nhau. a) Viết phương trình chuyển động của hai vật. Chọn A làm gốc tọa độ, chiều dương...
Back
Top