Dạng 1. Phương trình bậc bốn dạng $a{x^4} + b{x^3} + c{x^2} + bkx + a{k^2} = 0.$

Tăng Giáp

Administrator
Thành viên BQT
Ta có: $a{x^4} + b{x^3} + c{x^2} + bkx + a{k^2} = 0$ $ \Leftrightarrow a\left( {{x^4} + 2{x^2}.k + {k^2}} \right)$ $ + bx\left( {{x^2} + k} \right) + \left( {c – 2ak} \right){x^2} = 0$ $ \Leftrightarrow a{\left( {{x^2} + k} \right)^2} + bx\left( {{x^2} + k} \right)$ $ + \left( {c – 2ak} \right){x^2} = 0.$
Đến đây có hai hướng để giải quyết:
Cách 1: Đưa phương trình về dạng ${A^2} = {B^2}.$
Thêm bớt, biến đổi vế trái thành dạng hằng đẳng thức dạng bình phương của một tổng, chuyển các hạng tử chứa $x^2$ sang bên phải.
Cách 2: Đặt $y = {x^2} + k$ $ \Rightarrow y \ge k.$
Phương trình $a{x^4} + b{x^3} + c{x^2} + bkx + a{k^2} = 0$ trở thành: $a{y^2} + bxy$ $ + \left( {c – 2ak} \right){x^2} = 0.$
Tính $x$ theo $y$ hoặc $y$ theo $x$ để đưa về phương trình bậc hai theo ẩn $x.$

Ví dụ 1. Giải phương trình: ${x^4} – 8{x^3} + 21{x^2} – 24x + 9 = 0.$

Cách 1:
Phương trình $ \Leftrightarrow \left( {{x^4} + 9 + 6{x^2}} \right) – 8\left( {{x^2} + 3} \right) + 16{x^2}$ $ = 16{x^2} – 21{x^2} + 6{x^2}$ $ \Leftrightarrow {\left( {{x^2} – 4x + 3} \right)^2} = {x^2}$ $ \Leftrightarrow \left[ \begin{array}{l}
{x^2} – 4x + 3 = x\\
{x^2} – 4x + 3 = – x
\end{array} \right.$ $ \Leftrightarrow \left[ \begin{array}{l}
{x^2} – 5x + 3 = 0\\
{x^2} – 3x + 3 = 0
\end{array} \right.$ $ \Leftrightarrow \left[ \begin{array}{l}
x = \frac{{5 – \sqrt {13} }}{2}\\
x = \frac{{5 + \sqrt {13} }}{2}
\end{array} \right.$
Cách 2:
Phương trình $ \Leftrightarrow \left( {{x^4} + 6{x^2} + 9} \right)$ $ – 8x\left( {{x^2} + 3} \right) + 15{x^2} = 0$ $ \Leftrightarrow {\left( {{x^2} + 3} \right)^2} – 8x\left( {{x^2} + 3} \right) + 15{x^2} = 0.$
Đặt $y = {x^2} + 3$, phương trình trở thành: ${y^2} – 8xy + 15{x^2} = 0$ $ \Leftrightarrow \left( {y – 3x} \right)\left( {y – 5x} \right) = 0$ $ \Leftrightarrow \left[ \begin{array}{l}
y = 3x\\
y = 5x
\end{array} \right.$
Với $y = 3x$, ta có: $x^2+3=3x$, phương trình vô nghiệm.
Với $y = 5x$, ta có: ${x^2} + 3 = 5x$ $ \Leftrightarrow {x^2} – 5x + 3 = 0$ $ \Leftrightarrow \left[ \begin{array}{l}
x = \frac{{5 – \sqrt {13} }}{2}\\
x = \frac{{5 + \sqrt {13} }}{2}
\end{array} \right.$

Nhận xét: Mỗi cách giải có ưu điểm riêng, với cách giải 1, ta sẽ tính được trực tiếp mà không phải thông qua ẩn phụ, với cách giải 2, ta sẽ có những tính toán đơn giản hơn và ít bị nhầm lẫn.
 

Members online

No members online now.
Back
Top