Dạng toán 1. Lập bảng xét dấu biểu thức chứa nhị thức bậc nhất

Tăng Giáp

Administrator
Thành viên BQT
Ví dụ 1. Lập bảng xét dấu các biểu thức sau:
a) $-2x+3.$
b) $4x-12.$
c) ${{x}^{2}}-4.$
d) $-2{{x}^{2}}+5x-2.$

a) Ta có $-2x+3=0$ $ \Leftrightarrow x=\frac{3}{2}$, $a=-2<0.$
Bảng xét dấu:

Lập bảng xét dấu biểu thức chứa nhị thức bậc nhất.png


b) Ta có $4x-12=0$ $\Leftrightarrow x=3$, $a=4>0.$
Bảng xét dấu:

Lập bảng xét dấu biểu thức chứa nhị thức bậc nhất.png


c) Ta có:
${{x}^{2}}-4=\left( x-2 \right)\left( x+2 \right).$
$x-2=0$ $ \Leftrightarrow x=2.$
$x+2=0$ $\Leftrightarrow x=-2.$
Bảng xét dấu:

Lập bảng xét dấu biểu thức chứa nhị thức bậc nhất.png


d) Ta có: $-2{{x}^{2}}+5x-2=0\Leftrightarrow \left[ \begin{matrix}
x=2 \\
x=\frac{1}{2} \\
\end{matrix} \right.$
Suy ra $-2{{x}^{2}}+5x-2$ $=-2\left( x-2 \right)\left( x-\frac{1}{2} \right)$ $=\left( x-2 \right)\left( 1-2x \right).$
Bảng xét dấu:

Lập bảng xét dấu biểu thức chứa nhị thức bậc nhất.png


Ví dụ 2. Lập bảng xét dấu các biểu thức sau:
a) $\frac{-2x+3}{x-2}.$
b) $\frac{4x-12}{{{x}^{2}}-4x}.$
c) $x\left( 4-{{x}^{2}} \right)(x+2).$
d) $1-\frac{4{{x}^{2}}}{{{\left( x+1 \right)}^{2}}}.$

a) Bảng xét dấu:

Lập bảng xét dấu biểu thức chứa nhị thức bậc nhất.png


b) Ta có: $\frac{{4x – 12}}{{{x^2} – 4x}}$ $ = \frac{{4x – 12}}{{x\left( {x – 4} \right)}}.$
Bảng xét dấu:

Lập bảng xét dấu biểu thức chứa nhị thức bậc nhất.png


c) Ta có: $x\left( {4 – {x^2}} \right)(x + 2)$ $ = x\left( {2 – x} \right){\left( {x + 2} \right)^2}.$
Bảng xét dấu:

Lập bảng xét dấu biểu thức chứa nhị thức bậc nhất.png


d) Ta có: $1 – \frac{{4{x^2}}}{{{{\left( {x + 1} \right)}^2}}}$ $ = \frac{{{{\left( {x + 1} \right)}^2} – 4{x^2}}}{{{{\left( {x + 1} \right)}^2}}}$ $ = \frac{{\left( {3x + 1} \right)\left( {1 – x} \right)}}{{{{\left( {x + 1} \right)}^2}}}.$
Bảng xét dấu:

Lập bảng xét dấu biểu thức chứa nhị thức bậc nhất.png


Ví dụ 3. Tùy vào $m$ xét dấu các biểu thức sau $\frac{-2x+m}{x-2}.$

a) Ta có:
$x-2=0$ $\Leftrightarrow x=2.$
$-2x+m=0$ $\Leftrightarrow x=\frac{m}{2}.$
Trường hợp 1: $\frac{m}{2}>2$ $\Leftrightarrow m>4.$
Bảng xét dấu:

Lập bảng xét dấu biểu thức chứa nhị thức bậc nhất.png


Suy ra $\frac{-2x+m}{x-2}>0$ $\Leftrightarrow x\in \left( 2;\frac{m}{2} \right)$ và $\frac{-2x+m}{x-2}<0$ $\Leftrightarrow x\in \left( -\infty ;2 \right)\cup \left( \frac{m}{2};+\infty \right).$
Trường hợp 2: $\frac{m}{2}=2$ $\Leftrightarrow m=4.$
Ta có $\frac{-2x+m}{x-2}=\frac{-2x+2}{x-2}=-2.$
Suy ra $\frac{-2x+m}{x-2}<0$ $\Leftrightarrow x\in \mathbb{R}\backslash \left\{ 2 \right\}.$
Trường hợp 3: $\frac{m}{2}<2$ $\Leftrightarrow m<4.$
Bảng xét dấu:

Lập bảng xét dấu biểu thức chứa nhị thức bậc nhất.png


Suy ra $\frac{-2x+m}{x-2}>0$ $\Leftrightarrow x\in \left( \frac{m}{2};2 \right)$ và $\frac{-2x+m}{x-2}<0$ $\Leftrightarrow x\in \left( -\infty ;\frac{m}{2} \right)\cup \left( 2;+\infty \right).$
 

Latest posts

Members online

No members online now.
Back
Top