Giải
$\begin{gathered}
{A^2} = A_1^2 + A_2^2 + 2{A_1}{A_2}.\cos \left( {{\varphi _2} - {\varphi _1}} \right) \hfill \\
\,\,\,\,\,\,\,\, = {\left( {{A_1} + {A_2}} \right)^2} - 2{A_1}{A_2} + 2{A_1}{A_2}.\cos \left( {{\varphi _2} - {\varphi _1}} \right) \hfill \\
\,\,\,\,\,\,\,\, = {\left( {{A_1} + {A_2}} \right)^2} - 2\left[ {1 - \cos \left( {{\varphi _2} - {\varphi _1}} \right)} \right].{A_1}{A_2}\left( 1 \right) \hfill \\
\end{gathered} $
Mặt khác: $\frac{{{{\left( {{A_1} + {A_2}} \right)}^2}}}{4} \geqslant {A_1}{A_2}\left( 2 \right)$
Từ (1) và (2), ta có:
$\begin{gathered}
{A^2} \geqslant \,{\left( {{A_1} + {A_2}} \right)^2} + 2\left[ {1 - \cos \left( {{\varphi _2} - {\varphi _1}} \right)} \right].\frac{{{{\left( {{A_1} + {A_2}} \right)}^2}}}{4} \hfill \\
\leftrightarrow {A^2} \geqslant \,\frac{1}{2}\left[ {3 - \cos \left( {{\varphi _2} - {\varphi _1}} \right)} \right]{\left( {{A_1} + {A_2}} \right)^2} \leftrightarrow {\left( {{A_1} + {A_2}} \right)^2} \leqslant \frac{{{A^2}}}{{\,\frac{1}{2}\left[ {3 - \cos \left( {{\varphi _2} - {\varphi _1}} \right)} \right]}} \hfill \\
\end{gathered} $
Dấu “=” xảy ra thì (A1 + A2) đạt giá trị cực đại =>A1 = A2 nên $\tan \varphi = \frac{{{A_1}\sin {\varphi _1} + {A_2}\sin {\varphi _2}}}{{{A_1}\cos {\varphi _1} + {A_2}\cos {\varphi _2}}} = \frac{{\sin {\varphi _1} + \sin {\varphi _2}}}{{\cos {\varphi _1} + \cos {\varphi _2}}} \to \varphi = \frac{\pi }{{24}}$