$I = \int\limits_0^{\pi /4} {\cos 2x} .\ln (\sin x + \cos x)dx\;\; = \frac{1}{2}\int\limits_0^{\pi /4} {\ln {{(\sin x + \cos x)}^2}.\cos 2x} .dx$
$ = \frac{1}{2}\int\limits_0^{\pi /4} {\ln (1 + \sin 2x)\cos 2x} dx.$
Đặt: $\left\{ \begin{array}{l}u = \ln \left( {1 + \sin 2x} \right)\\dv = \cos 2xdx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = \frac{{2\cos 2x}}{{1 + \sin 2x}}dx\\v = \frac{1}{2}\left( {1 + \sin 2x} \right).
\end{array} \right.$
$I = \frac{1}{2}\left[ {\left. {\frac{1}{2}\left( {1 + \sin 2x} \right)\ln \left( {1 + \sin 2x} \right)} \right|_0^{\pi /4} - \int\limits_0^{\pi /4} {\cos 2x} dx} \right]$
$ = \frac{1}{2}\left[ {\ln 2 - \left. {\frac{1}{2}\sin 2x} \right|_0^{\pi /4}} \right] = \frac{{2\ln 2 - 1}}{4}.$