Hỏi/Đáp giúp em câu tích phân khó này với ạ

Le Van Huu

Mới đăng kí
$I = \int\limits_1^e {\frac{{({x^3} - 1)\ln x}}{x}} dx$
 
  • Like
Reactions: nga
Em làm như sau:
$\begin{array}{l}\int\limits_1^e {{x^2}\ln xdx + \int\limits_1^e {\frac{{\ln x}}{x}dx} } = {I_1} + {I_2}\\
{I_1} = \int\limits_1^e {{x^2}\ln xdx} = \left. {\frac{{{x^3}}}{3}\ln x} \right|_1^e - \int\limits_1^e {\frac{{{x^2}}}{3}} dx = \frac{{{e^3}}}{3} - \left. {\frac{{{x^3}}}{9}} \right|_1^e = \frac{{2{e^3} + 1}}{9}\\
{I_2} = \int\limits_1^e {\frac{{\ln x}}{x}dx = \int\limits_1^e {\ln xd(\ln x)} = \left. {\frac{{{{\ln }^2}x}}{2}} \right|} _1^e = \frac{1}{2}\\ = > I = \frac{{4{e^3} + 11}}{{18}}\end{array}$
 
  • Like
Reactions: nga
giải hộ câu này với $\int (\sqrt{x}/\sqrt{1+x^4})$
 
Last edited by a moderator:

Latest posts

Members online

No members online now.
Back
Top