Giải và biện luận phương trình lượng giác $\sin x = m$
Do $\sin x \in \left[ { – 1;1} \right]$ nên để giải phương trình $\sin x = m$ ta đi biện luận theo các bước sau:
• Bước 1: Nếu $|m| > 1$ thì phương trình vô nghiệm.
• Bước 2: Nếu $|m| ≤ 1$, ta xét 2 khả năng:
+ Khả năng 1: Nếu $m$ được biểu diễn qua $sin$ của góc đặc biệt, giả sử $\alpha $, khi đó phương trình sẽ có dạng: $\sin x = \sin \alpha $ $ \Leftrightarrow \left[ \begin{array}{l}
x = \alpha + k2\pi \\
x = \pi – \alpha + k2\pi
\end{array} \right.$ $\left( {k \in Z} \right).$
+ Khả năng 2: Nếu $m$ không biểu diễn được qua $sin$ của góc đặc biệt, khi đó đặt $m = \sin \alpha $. Ta có: $\sin x = \sin \alpha $ $ \Leftrightarrow \left[ \begin{array}{l}
x = \alpha + k2\pi \\
x = \pi – \alpha + k2\pi
\end{array} \right.$ $\left( {k \in Z} \right).$
Chú ý: Nếu $α$ thỏa mãn $\left\{ \begin{array}{l}
– \frac{\pi }{2} \le \alpha \le \frac{\pi }{2}\\
\sin \alpha = m
\end{array} \right.$ thì ta viết $\alpha = \arcsin m.$
Các trường hợp đặc biệt:
1. $\sin x = 1 \Leftrightarrow x = \frac{\pi }{2} + k2\pi .$
2. $\sin x = – 1 \Leftrightarrow x = – \frac{\pi }{2} + k2\pi .$
3. $\sin x = 0 \Leftrightarrow x = k\pi .$
Ví dụ 1: Giải phương trình: $\sin (3x + \frac{\pi }{4}) = \frac{{\sqrt 3 }}{2}.$
Do $\sin \frac{\pi }{3} = \frac{{\sqrt 3 }}{2}$ nên: $\sin (3x + \frac{\pi }{4}) = \frac{{\sqrt 3 }}{2}$ $ \Leftrightarrow \sin (3x + \frac{\pi }{4}) = \sin \frac{\pi }{3}$
$ \Leftrightarrow \left[ \begin{array}{l}
3x + \frac{\pi }{4} = \frac{\pi }{3} + k2\pi \\
3x + \frac{\pi }{4} = \pi – \frac{\pi }{3} + k2\pi
\end{array} \right.$ $ \Leftrightarrow \left[ \begin{array}{l}
3x = – \frac{\pi }{4} + \frac{\pi }{3} + k2\pi \\
3x = \pi – \frac{\pi }{3} – \frac{\pi }{4} + k2\pi
\end{array} \right.$ $ \Leftrightarrow \left[ \begin{array}{l}
x = \frac{\pi }{{24}} + k\frac{{2\pi }}{3}\\
x = \frac{{5\pi }}{{24}} + k\frac{{2\pi }}{3}
\end{array} \right.\left( {k \in Z} \right).$
Vậy phương trình có hai họ nghiệm $\left[ \begin{array}{l}
x = \frac{\pi }{{24}} + k\frac{{2\pi }}{3}\\
x = \frac{{5\pi }}{{24}} + k\frac{{2\pi }}{3}
\end{array} \right. (k \in Z).$
Ví dụ 2: Giải phương trình $\sin x = \frac{1}{4}.$
Ta nhận thấy $\frac{1}{4}$ không là giá trị của cung đặc biệt nào.
Ta có: $\sin x = \frac{1}{4}$ $ \Leftrightarrow \left[ \begin{array}{l}
x = \arcsin \frac{1}{4} + k2\pi \\
x = \pi – \arcsin \frac{1}{4} + k2\pi
\end{array} \right.\left( {k \in Z} \right).$
Vậy phương trình có 2 họ ngiệm $\left[ \begin{array}{l}
x = \arcsin \frac{1}{4} + k2\pi \\
x = \pi – \arcsin \frac{1}{4} + k2\pi
\end{array} \right.\left( {k \in Z} \right).$
Do $\sin x \in \left[ { – 1;1} \right]$ nên để giải phương trình $\sin x = m$ ta đi biện luận theo các bước sau:
• Bước 1: Nếu $|m| > 1$ thì phương trình vô nghiệm.
• Bước 2: Nếu $|m| ≤ 1$, ta xét 2 khả năng:
+ Khả năng 1: Nếu $m$ được biểu diễn qua $sin$ của góc đặc biệt, giả sử $\alpha $, khi đó phương trình sẽ có dạng: $\sin x = \sin \alpha $ $ \Leftrightarrow \left[ \begin{array}{l}
x = \alpha + k2\pi \\
x = \pi – \alpha + k2\pi
\end{array} \right.$ $\left( {k \in Z} \right).$
+ Khả năng 2: Nếu $m$ không biểu diễn được qua $sin$ của góc đặc biệt, khi đó đặt $m = \sin \alpha $. Ta có: $\sin x = \sin \alpha $ $ \Leftrightarrow \left[ \begin{array}{l}
x = \alpha + k2\pi \\
x = \pi – \alpha + k2\pi
\end{array} \right.$ $\left( {k \in Z} \right).$
Chú ý: Nếu $α$ thỏa mãn $\left\{ \begin{array}{l}
– \frac{\pi }{2} \le \alpha \le \frac{\pi }{2}\\
\sin \alpha = m
\end{array} \right.$ thì ta viết $\alpha = \arcsin m.$
Các trường hợp đặc biệt:
1. $\sin x = 1 \Leftrightarrow x = \frac{\pi }{2} + k2\pi .$
2. $\sin x = – 1 \Leftrightarrow x = – \frac{\pi }{2} + k2\pi .$
3. $\sin x = 0 \Leftrightarrow x = k\pi .$
Ví dụ 1: Giải phương trình: $\sin (3x + \frac{\pi }{4}) = \frac{{\sqrt 3 }}{2}.$
Do $\sin \frac{\pi }{3} = \frac{{\sqrt 3 }}{2}$ nên: $\sin (3x + \frac{\pi }{4}) = \frac{{\sqrt 3 }}{2}$ $ \Leftrightarrow \sin (3x + \frac{\pi }{4}) = \sin \frac{\pi }{3}$
$ \Leftrightarrow \left[ \begin{array}{l}
3x + \frac{\pi }{4} = \frac{\pi }{3} + k2\pi \\
3x + \frac{\pi }{4} = \pi – \frac{\pi }{3} + k2\pi
\end{array} \right.$ $ \Leftrightarrow \left[ \begin{array}{l}
3x = – \frac{\pi }{4} + \frac{\pi }{3} + k2\pi \\
3x = \pi – \frac{\pi }{3} – \frac{\pi }{4} + k2\pi
\end{array} \right.$ $ \Leftrightarrow \left[ \begin{array}{l}
x = \frac{\pi }{{24}} + k\frac{{2\pi }}{3}\\
x = \frac{{5\pi }}{{24}} + k\frac{{2\pi }}{3}
\end{array} \right.\left( {k \in Z} \right).$
Vậy phương trình có hai họ nghiệm $\left[ \begin{array}{l}
x = \frac{\pi }{{24}} + k\frac{{2\pi }}{3}\\
x = \frac{{5\pi }}{{24}} + k\frac{{2\pi }}{3}
\end{array} \right. (k \in Z).$
Ví dụ 2: Giải phương trình $\sin x = \frac{1}{4}.$
Ta nhận thấy $\frac{1}{4}$ không là giá trị của cung đặc biệt nào.
Ta có: $\sin x = \frac{1}{4}$ $ \Leftrightarrow \left[ \begin{array}{l}
x = \arcsin \frac{1}{4} + k2\pi \\
x = \pi – \arcsin \frac{1}{4} + k2\pi
\end{array} \right.\left( {k \in Z} \right).$
Vậy phương trình có 2 họ ngiệm $\left[ \begin{array}{l}
x = \arcsin \frac{1}{4} + k2\pi \\
x = \pi – \arcsin \frac{1}{4} + k2\pi
\end{array} \right.\left( {k \in Z} \right).$