Tìm cực trị của hàm số

Tăng Giáp

Administrator
Thành viên BQT
Phương pháp
Để tìm cực trị của hàm số $y = f(x)$, ta thực hiện theo các bước sau đây:
+ Tìm tập xác định $D$ của hàm số $f$.
+ Tính $f’(x)$.
+ Tìm nghiệm của phương trình $f’(x) = 0$ (nếu có) và tìm các điểm ${x_0} \in D$ mà tại đó hàm $f$ liên tục nhưng $f'({x_0})$ không tồn tại.
+ Vận dụng một trong các định lý sau đây để xác định điểm cực trị của hàm số:
Định lý 1: Giả sử hàm số $f$ liên tục trên khoảng $\left( {a;b} \right)$ chứa điểm ${x_0}$ và có đạo hàm trên các khoảng $\left( {a;{x_0}} \right)$ và $\left( {{x_0};b} \right)$. Khi đó:
Nếu $\left\{ \begin{array}{l}
f’\left( {{x_0}} \right) < 0,x \in \left( {a;{x_0}} \right)\\
f’\left( {{x_0}} \right) > 0,x \in \left( {{x_0};b} \right)
\end{array} \right.$ thì hàm số đạt cực tiểu tại điểm ${x_0}.$


Tìm cực trị của hàm số.png


Nếu $\left\{ \begin{array}{l}
f’\left( {{x_0}} \right) > 0,x \in \left( {a;{x_0}} \right)\\
f’\left( {{x_0}} \right) < 0,x \in \left( {{x_0};b} \right)
\end{array} \right.$ thì hàm số đạt cực đại tại điểm ${x_0}.$

Tìm cực trị của hàm số.png


Định lý 2: Giả sử hàm số $f$ có đạo hàm cấp một trên khoảng $\left( {a;b} \right)$ chứa điểm ${x_0}$, $f’\left( {{x_0}} \right) = 0$ và $f$ có đạo hàm cấp hai khác $0$ tại điểm ${x_0}.$
Nếu $f”\left( {{x_0}} \right) < 0$ thì hàm số $f$ đạt cực đại tại điểm ${x_0}.$
Nếu $f”\left( {{x_0}} \right) > 0$ thì hàm số $f$ đạt cực tiểu tại điểm ${x_0}.$

Chú ý: Cho hàm số $y = f(x)$ xác định trên $D.$ Điểm $x = {x_0} \in D$ là điểm cực trị của hàm số khi và chỉ khi hai điều kiện sau đây cùng thảo mãn:
+ Tại $x = {x_0}$, đạo hàm triệt tiêu (tức $f'({x_0}) = 0$) hoặc không tồn tại.
+ Đạo hàm đổi dấu khi $x$ đi qua ${x_0}.$

Ví dụ minh họa
Ví dụ 1
. Tìm cực trị (nếu có) của các hàm số sau:
a. $y = – {x^4} + 2{x^2} + 1.$
b. $y = – {x^4} + 6{x^2} – 8x + 1.$

a. TXĐ: $D = R.$
Ta có: $y’ = – 4{x^3} + 4x$ $ = – 4x({x^2} – 1)$ $ \Rightarrow y’ = 0 \Leftrightarrow x = 0$ hoặc $x = \pm 1.$
Cách 1: (Dùng định lý 1, xét dấu $y’$)
Giới hạn: $\mathop {\lim }\limits_{x \to – \infty } y = – \infty ,\mathop {\lim }\limits_{x \to + \infty } y = – \infty .$
Bảng biến thiên:

Tìm cực trị của hàm số.png


Hàm số đạt cực đại tại các điểm $x = \pm 1$ với giá trị cực đại của hàm số là $y( \pm 1) = 2$ và hàm số đạt cực tiểu tại điểm $x = 0$ với giá trị cực tiểu của hàm số là $y(0) = 1.$
Cách 2: (Dùng định lý 2)
$y” = – 12{x^2} + 4 = – 4(3{x^2} – 1).$
$y”\left( { \pm 1} \right) = – 8 < 0$ suy ra $x = \pm 1$ là điểm cực đại của hàm số và ${{\rm{y}}_{CĐ}} = 2.$
$y”\left( 0 \right) = 4 > 0$ suy ra $x = 0$ là điểm cực đại của hàm số và ${{\rm{y}}_{{\rm{CT}}}} = {\rm{1}}{\rm{.}}$
b. TXĐ: $D = R.$
Ta có: $y’ = – 4{x^3} + 12x – 8$ $ = – 4{(x – 1)^2}(x + 2)$ $ \Rightarrow y’ = 0 \Leftrightarrow x = – 2, x = 1.$
Giới hạn: $\mathop {\lim }\limits_{x \to – \infty } y = – \infty ,\mathop {\lim }\limits_{x \to + \infty } y = – \infty .$
Bảng biến thiên:

Tìm cực trị của hàm số.png


Hàm đạt cực đại tại $x = – 2$ với giá trị cực đại của hàm số là $y( – 2) = 25$, hàm số không có cực tiểu.
Nhận xét: Trong bài toán này, vì $\left\{ \begin{array}{l}
y'(1) = 0\\
y”(1) = 0
\end{array} \right.$ do đó định lý 2 không khẳng định được điểm $x = 2$ có phải là điểm cực trị của hàm số hay không.

Ví dụ 2. Tìm cực trị (nếu có) của các hàm số sau:
a. $y = – {x^3} – \frac{3}{2}{x^2} + 6x + 1.$
b. $y = \sqrt {x + \sqrt {{x^2} – x + 1} } .$

a. TXĐ: $D = R.$
Ta có: $y’ = – 3{x^2} – 3x + 6$ $ = – 3({x^2} + x – 2)$ $ \Rightarrow y’ = 0 \Leftrightarrow x = – 2 , x = 1.$
$y” = – 6x – 3,$ $y”( – 2) = 9 > 0,$ $y”(1) = – 9 < 0.$
Suy ra hàm số đạt cực tiểu tại ${\rm{x}} = – {\rm{ 2}}$, ${{\rm{y}}_{{\rm{CT}}}} = {\rm{y}}\left( { – {\rm{2}}} \right) = – {\rm{9}}$ hàm số đạt cực đại tại ${\rm{x}} = {\rm{1}}$, ${{\rm{y}}_{{\rm{CĐ}}}} = {\rm{y}}\left( {\rm{1}} \right) = \frac{9}{2}.$
b. Hàm số xác định $ \Leftrightarrow x + \sqrt {{x^2} – x + 1} \ge 0$ $ \Leftrightarrow \sqrt {{x^2} – x + 1} \ge – x$
$ \Leftrightarrow \left\{ \begin{array}{l}
{x^2} – x + 1 \ge 0\\
– x \le 0
\end{array} \right.$ $ \vee \left\{ \begin{array}{l}
– x \ge 0\\
{x^2} – x + 1 \ge {( – x)^2}
\end{array} \right.$ $ \Leftrightarrow \left\{ \begin{array}{l}
\forall x \in R\\
x \ge 0
\end{array} \right. \vee \left\{ \begin{array}{l}
x \le 0\\
x \le 1
\end{array} \right.$ $ \Leftrightarrow x \ge 0 \vee x \le 0 \Leftrightarrow x \in R.$
Vậy tập xác định của hàm số: $D = R.$
$y’ = \frac{{\left( {x + \sqrt {{x^2} – x + 1} } \right)’}}{{2\sqrt {x + \sqrt {{x^2} – x + 1} } }}$ $ = \frac{{1 + \frac{{2x – 1}}{{2\sqrt {{x^2} – x + 1} }}}}{{2\sqrt {x + \sqrt {{x^2} – x + 1} } }}$ $ = \frac{{2\sqrt {{x^2} – x + 1} + 2x – 1}}{{2\sqrt {{x^2} – x + 1} .\sqrt {x + \sqrt {{x^2} – x + 1} } }}.$
$y’ = 0$ $ \Leftrightarrow 2\sqrt {{x^2} – x + 1} = 1 – 2x$ $ \Leftrightarrow \left\{ \begin{array}{l}
1 – 2x \ge 0\\
4({x^2} – x + 1) = {(1 – 2x)^2}
\end{array} \right.$ $ \Leftrightarrow \left\{ \begin{array}{l}
x \le \frac{1}{2}\\
4 = 1
\end{array} \right.$
Vậy phương trình $y’ = 0$ vô nghiệm, lại có $y’$ luôn tồn tại, suy ra hàm số không có điểm cực trị.

Ví dụ 3. Tìm cực trị (nếu có) của các hàm số sau:
a. $y = \frac{{4 – \left| x \right|}}{{4 + \left| x \right|}}.$
b. $y = \left| {x + 3} \right| + \frac{1}{{x + 1}}.$

a. TXĐ: $D = R.$
Nếu ${\rm{x}} \in [0; + \infty )$ thì $y = \frac{{4 – x}}{{4 + x}}$ $ \Rightarrow y’ = – \frac{8}{{{{(4 + x)}^2}}} < 0,$ $\forall x \in [0; + \infty ).$
Nếu ${\rm{x}} \in ( – \infty ;0]$ thì $y = \frac{{4 + x}}{{4 – x}}$ $ \Rightarrow y’ = \frac{8}{{{{(4 – x)}^2}}} > 0,$ $\forall x \in ( – \infty ;0].$
Tại $x = 0$ thì $y'({0^ + }) = – \frac{1}{2}$, $y'({0^ – }) = \frac{1}{2}$. Vì $y'({0^ + }) \ne y'({0^ – })$ nên $y'(0)$ không tồn tại.
Vậy hàm số đạt cực đại tại ${\rm{x}} = 0,{\rm{ }}{{\rm{y}}_{{\rm{CĐ}}}} = {\rm{1}}.$
b. $y = \left| {x + 3} \right| + \frac{1}{{x + 1}}$ $ = \left\{ \begin{array}{l}
x + 3 + \frac{1}{{x + 1}} khi x \ge – 3\\
– (x + 3) + \frac{1}{{x + 1}} khi x < – 3
\end{array} \right.$
TXĐ: ${\rm{D}} = R\backslash \left\{ { – 1} \right\}.$
Nếu $ x \ge – 3$ thì $y = x + 3 + \frac{1}{{x + 1}}$, ta có: $y’ = 1 – \frac{1}{{{{(x + 1)}^2}}}$ $ = \frac{{{{(x + 1)}^2} – 1}}{{{{(x + 1)}^2}}}.$
Và $y’ = 0 \Leftrightarrow \left\{ \begin{array}{l}
{(x + 1)^2} = 1\\
x > – 3
\end{array} \right.$ $ \Leftrightarrow \left\{ \begin{array}{l}
x + 1 = \pm 1\\
x > – 3
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = 0\\
x = – 2
\end{array} \right.$
Tại $ x = – 3$, ta có: $y'( – {3^ + })$ $ = 1 – \frac{1}{{{{( – 3 + 1)}^2}}} = \frac{3}{4}$, $y'( – {3^ – })$ $ = – 1 – \frac{1}{{{{( – 3 + 1)}^2}}} = – \frac{5}{4}.$
Vì $y'( – {3^ + }) \ne y'( – {3^ – })$ nên $y'( – 3)$ không tồn tại.
Nếu $x < – 3$ thì $y = – (x + 3) + \frac{1}{{x + 1}}$, ta có: $y’ = – 1 – \frac{1}{{{{(x + 1)}^2}}} < 0$, $\forall x < – 3.$
Bảng biến thiên:

Tìm cực trị của hàm số.png


Suy ra điểm cực tiểu của hàm số là $x = – 3$, ${{\rm{y}}_{{\rm{CT}}}} = – \frac{1}{2}$ và ${\rm{x}} = 0$, ${{\rm{y}}_{{\rm{CT}}}} = {\rm{ 4}}$, điểm cực đại của hàm số là ${\rm{x}} = – {\rm{ 2}}$, ${{\rm{y}}_{{\rm{CD}}}} = 0.$

Ví dụ 4. Tìm cực trị (nếu có) của hàm số: $y = 3 – 2\cos x – \cos 2x.$

TXĐ: ${\rm{D}} = R.$
Ta có: $y’ = 2\sin x\left( {2\cos x + 1} \right)$ và $y” = 2\cos x + 4\cos 2x.$
$y’ = 0$ ⇔ $\left[ \begin{array}{l}
\sin x = 0 \Leftrightarrow x = k\pi \\
\cos x = – \frac{1}{2} \Leftrightarrow x = \pm \frac{{2\pi }}{3} + k2\pi
\end{array} \right.$
$y”\left( {k\pi } \right)$ $ = 2\cos \left( {k\pi } \right) + 2\cos 2\left( {k\pi } \right).$
$y”\left( {k\pi } \right) = 6 > 0$ nếu $k$ chẵn, suy ra hàm số đạt cực tiểu tại điểm $x = 2n\pi, n \in Z$ và $y\left( {2n\pi } \right) = 0.$
$y”\left( {k\pi } \right) = 2 > 0$ nếu $k$ lẻ, suy ra hàm số đạt cực tiểu tại điểm $x = \left( {2n + 1} \right)\pi, n \in Z$ và $y\left( {2n + 1} \right)\pi = 4.$
$y”\left( { \pm \frac{{2\pi }}{3} + k2\pi } \right) < 0$ suy ra hàm số đạt cực đại tại điểm $x = \pm \frac{{2\pi }}{3} + k2\pi $ và $y\left( { \pm \frac{{2\pi }}{3} + k2\pi } \right) = \frac{9}{2}.$
 

Latest posts

Members online

No members online now.
Back
Top