$\begin{array}{l}
R \nearrow \to {P_{\max }} \to R = \left| {{Z_L} - {Z_C}} \right|\\
\to \left\{ \begin{array}{l}
\tan \varphi = \frac{{{Z_L} - {Z_C}}}{R} = \pm 1 \to \varphi = \frac{\pi }{4} \to {\varphi _u} = {\varphi _{i1}} + \frac{\pi }{4} = \frac{{7\pi }}{{12}}\left( 1 \right)\\
I = \frac{U}{{\sqrt {{R^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}} }} = \frac{U}{{\sqrt 2 \left( {{Z_L} - {Z_C}} \right).}} = 2\sqrt 2 \to \frac{U}{{\left( {{Z_L} - {Z_C}} \right)}} = 4\left( 2 \right)
\end{array} \right.
\end{array}$
${R_1} \to \left\{ \begin{array}{l}
\tan \left( {{\varphi _u} - {\varphi _{i1}}} \right) = \frac{{{Z_L} - {Z_C}}}{{{R_1}}} \to {R_1} = \frac{{{Z_L} - {Z_C}}}{{\tan \left( {\frac{\pi }{{12}}} \right)}}\\
{I_1} = \frac{U}{{\sqrt {R_1^2 + {{\left( {{Z_L} - {Z_C}} \right)}^2}} }} \leftrightarrow 1 = \frac{U}{{\sqrt {{{\left( {\frac{{{Z_L} - {Z_C}}}{{\tan \left( {\frac{\pi }{{12}}} \right)}}} \right)}^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}} }} \to \frac{U}{{\left( {{Z_L} - {Z_C}} \right)}} = 3,863\left( 3 \right)
\end{array} \right.$
từ (2) và (3) suy ra vô lý!
(bạn có thể kiểm tra với trường hợp Z$_L$ < Z$_C$