Câu 1
Cho hình chóp có đáy là hình vuông cạnh a,\(SD = \frac{{a\sqrt {17} }}{2}\) . Hình chiếu vuông góc H của S lên mặt (ABCD) là trung điểm của đoạn AB. Gọi K là trung điểm của AD. Tính khoảng cách giữa hai đường SD và HK theo a.
A. \(d = \frac{{a\sqrt 3 }}{7}\)
B. \(d= \frac{{a\sqrt 3 }}{5}\)
C. \(d = \frac{{a\sqrt {21} }}{5}\)
D. \(d = \frac{{a\sqrt 3 }}{7}\)
Ta có
\(SH = \sqrt {S{D^2} - H{D^2}} = \sqrt {S{D^2} - H{A^2} - A{D^2}} = a\sqrt 3\)
Kẻ \(HM \bot BD\), gọi O là giao điểm của AC và BD ta có:
\(AO = \frac{{AO}}{2} = \frac{{a\sqrt 2 }}{2} \Rightarrow HM = \frac{{AC}}{2} = \frac{{a\sqrt 2 }}{4}\)
\(HK//BD \Rightarrow HK//\left( {SBD} \right)\)
\(\Rightarrow d\left( {HK;SD} \right) = d\left( {HK;\left( {SBD} \right)} \right)\)
Mà \(d\left( {HK;\left( {SBD} \right)} \right) = d\left( {H;\left( {SBD} \right)} \right)\)
Kẻ \(HN \bot SM\) tại M. Khi đó \(d\left( {H;\left( {SBD} \right)} \right) = HN\).
\(\frac{1}{{H{N^2}}} = \frac{1}{{S{H^2}}} + \frac{1}{{H{M^2}}} \Rightarrow HN = \frac{{a\sqrt 3 }}{5}\)
\(\Rightarrow d\left( {HK;SD} \right) = \frac{{a\sqrt 3 }}{5}\)
Câu 2
Cho hình chóp S.ABCD có đáy là hình vuông; mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy; \(BC = a\sqrt 3\). Tính khoảng cách h từ điểm A đến mặt phẳng (SCD).
A. \(h = \frac{{3a}}{{\sqrt 7 }}\)
B. \(h = \frac{{a\sqrt 2 }}{3}\)
C. \(h = \frac{{a\sqrt 6 }}{3}\)
D. \(h = \frac{{a\sqrt {21} }}{7}\)
Gọi M, N lần lượt là trung điểm của AB và CD.
Vì tam giác SAB đều và \(\left( {SAB} \right) \bot \left( {ABCD} \right)\) nên \(SM \bot \left( {ABCD} \right)\)
Vì \(AM//CD \Rightarrow AM//(SCD) \Rightarrow h = d\left( {A,\left( {SCD} \right)} \right) = d\left( {M,\left( {SCD} \right)} \right)\)
Vì \(MN//BC \Rightarrow MN \bot CD\)
Gọi H là hình chiếu vuông góc của M lên SN.
\(\left\{ \begin{array}{l} CD \bot MN\\ CD \bot SM \end{array} \right. \Rightarrow CD \bot \left( {SMN} \right) \Rightarrow CD \bot MH\)
\(\Rightarrow MH \bot \left( {SCD} \right)\)
\(MN = AB = BC = a\sqrt 3\)
\(SM = AB.\frac{{\sqrt 3 }}{2} = \frac{{3a}}{2}\)
\(\frac{1}{{M{H^2}}} = \frac{1}{{S{M^2}}} + \frac{1}{{M{N^2}}} \Rightarrow SH = \frac{{3a}}{{\sqrt 7 }}\)
Câu 3
Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2a. Đường thẳng SA vuông góc với mặt phẳng đáy, SA=2a. Gọi N là trung điểm của AD. Tính khoảng cách d giữa hai đường thẳng SN và CD.
A. \(d = \frac{{2a}}{{\sqrt 5 }}\)
B. \(d =a\sqrt5\)
C. \(d =a\sqrt2\)
D. \(d = \frac{{2a}}{{\sqrt 3 }}\)
Gọi M là trung điểm BC
Vì CD//MN nên CD//(SMN)
Suy ra: d(CD;SN)=d(CD,(SMN))=d(D;(SMN))=d(A;(SMN))
(Vì N là trung điểm của AD)
Vẽ \(AH \bot SN\) tại H.
Ta có:
\(\begin{array}{l} \left\{ \begin{array}{l} MN \bot SA\\ MN \bot AN \end{array} \right. \Rightarrow MN \bot (SAN)\\ \Rightarrow MN \bot AH \Rightarrow AH \bot (SMN)\\ \frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{N^2}}} \Rightarrow AH = \frac{{2a\sqrt 5 }}{5}\\ \Rightarrow d\left( {SN,CD} \right) = \frac{{2a\sqrt 5 }}{5} \end{array}\)
Câu 4
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Đường thẳng SA vuông góc với mặt phẳng đáy, SA=a. Gọi M là trung điểm của cạnh CD. Tính khoảng cách d từ M đến mặt phẳng (SAB).
A. \(d = a\sqrt 2\)
B. \(d = 2a\)
C. \(d = a\)
D. \(d = \frac{{a\sqrt 2 }}{2}\)
Gọi N là trung điểm của AB.
Ta có:
\(\begin{array}{l} \left\{ \begin{array}{l} MN \bot AB\\ MN \bot SA \end{array} \right. \Rightarrow MN \bot (SAB)\\ \Rightarrow d(M,(SAB)) = MN = AD = a \end{array}\)
Câu 5
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy. Biết hình chóp S.ABC có thể tích bằng \(a^3\). Tính khoảng cách d từ điểm A đến mặt phẳng (SBC).
A. \(d = \frac{{6{\rm{a}}\sqrt {195} }}{{65}}\)
B. \(d = \frac{{{\rm{a}}\sqrt {195} }}{{65}}\)
C. \(d = \frac{{4{\rm{a}}\sqrt {195} }}{{65}}\)
D. \(d = \frac{{8{\rm{a}}\sqrt {195} }}{{195}}\)
Gọi các điểm như hình vẽ.
Ta có \(AI \bot BC,SA \bot BC \Rightarrow BC \bot \left( {SAI} \right)\)
Suy ra \(BC \bot AK \Rightarrow AK = {d_{\left( {A,\left( {SBC} \right)} \right)}}\)
Ta có: \(V = {a^3},{S_{\Delta ABC}} = \frac{{{a^2}\sqrt 3 }}{4} \Rightarrow SA = 4a\sqrt 3\)
Mà \(AI = \frac{{a\sqrt 3 }}{2}\)
Trong tam giác vuông SAI ta có \(\frac{1}{{A{K^2}}} = \frac{1}{{A{S^2}}} + \frac{1}{{A{I^2}}}\)
Vậy \(d = AK = \sqrt {\frac{{A{S^2}.A{I^2}}}{{A{S^2} + A{I^2}}}} = \frac{{4a\sqrt {195} }}{{65}}.\)
Câu 6
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SD = \frac{{a\sqrt {17} }}{2}, hình chiếu vuông góc H của S lên mặt (ABCD) là trung điểm của đoạn AB. Tính chiều cao h của khối chóp H.SBD theo a.
A. \(h = \frac{{\sqrt 3 a}}{2}\)
B. \(h = \frac{{a\sqrt 3 }}{7}\)
C. \(h = \frac{{a\sqrt {21} }}{2}\)
D. \(h = \frac{{3a}}{5}\)
Từ H kẻ HI vuông góc với BD \(\left( {I \in BD} \right)\) và \(HK \bot SI\) suy ra \(HK \bot \left( {SBD} \right).\)
Ta có \(SH = \sqrt {S{D^2} - H{D^2}} = a\sqrt 3\) và \(HI = \frac{{AC}}{4} = \frac{{a\sqrt 2 }}{4}\)
Suy ra \(HK = \frac{{SH.IH}}{{\sqrt {S{H^2} + I{H^2}} }} = \frac{{\frac{{{a^2}\sqrt 6 }}{4}}}{{\frac{{5a\sqrt 2 }}{4}}} = \frac{{a\sqrt 3 }}{5}\)
Do đó chiều cao của khối chóp H.SBD là \(h = \frac{{a\sqrt 3 }}{5}.\)
Câu 7
Cho hình chóp S.ABCD có đáy là hình chữ nhật, \(AB = a,AD = 2a\); cạnh bên SA = a và vuông góc với đáy. Tính khoảng cách d từ A tới mặt phẳng (SBD) .
A. d=a
B. \(d = \frac{{2a}}{3}\)
C. \(d = \frac{{a}}{3}\)
D. \(d = \frac{{a}}{2}\)
Gọi K là hình chiếu của A lên BD nên \(AK \bot BD\)
Ta có \(SA \bot (ABCD) \Rightarrow SA \bot BD \Rightarrow BD \bot (SAK)\)
Từ A kẻ \(AH \bot BD(H \in BD)\) mà \(BD \bot (SAK) \Rightarrow BD \bot AH\)
\(\Rightarrow AH \bot (SBD) \Rightarrow d(A;(SBD)) = AH\)
Kẻ \(\Delta SAK\) vuông tại A, đường cao AH khi đó \(\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{K^2}}}\)
Mặt khác \(\frac{1}{{A{K^2}}} = \frac{1}{{A{B^2}}} = \frac{1}{{A{D^2}}} \Rightarrow \frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{B^2}}} + \frac{1}{{A{D^2}}} = \frac{9}{{4{a^2}}}\)
Suy ra \(AH = \frac{{2a}}{3}\), vậy khoảng cách cần tính là \(d(A;(SBD)) = \frac{{2a}}{3}\)
Câu 8
Cho hình chóp S.ABC có SA, SB, SC đôi một vuông góc với nhau và SA=a, SB=3a, SC=4a. Tìm độ dài đường cao SH của hình chóp.
A. \(SH = \frac{{14a}}{{13}}.\)
B. \(SH = 7a.\)
C. \(SH = \frac{{12a}}{{13}}.\)
D. \(SH = \frac{{13a}}{{12}}.\)
\(\frac{1}{{S{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{S{B^2}}} + \frac{1}{{S{C^2}}} = \frac{{169}}{{144{a^2}}} \Rightarrow SH = \frac{{12a}}{{13}}.\)
Câu 9
Cho hình hộp chữ nhật ABCD.A’B’C’D’ có các cạnh \(AA' = 1,AB = 2,AD = 3.\) Tính khoảng cách d từ điểm A đến mặt phẳng (A’BD).
A. \(d = \frac{{49}}{{36}}.\)
B. \(d = \frac{{9}}{{13}}.\)
C. \(d = \frac{{7}}{{6}}.\)
D. \(d = \frac{{6}}{{7}}.\)
Dựng \(AK \bot BD,K \in BD\) mà \(AA' \bot BD\) suy ra \(BD \bot \left( {AA'K} \right)\).
Dựng \(AH \bot A'K,H \in A'K\) mà \(AH \bot BD\) suy ra \(AH \bot \left( {A'BD} \right)\) nên \(d\left( {A,\left( {A'BD} \right)} \right) = AH\)
Ta có tam giác ABD vuông tại A, đường cao AK nên \(\frac{1}{{A{H^2}}} = \frac{1}{{A{K^2}}} + \frac{1}{{A{{A'}^2}}}\)
Ta có tam giác AA’K vuông tại A, đường cao AH nên \(\frac{1}{{A{H^2}}} = \frac{1}{{A{K^2}}} + \frac{1}{{A{{A'}^2}}}\)
Suy ra \(\frac{1}{{A{H^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{D^2}}} + \frac{1}{{A{{A'}^2}}}\)
Suy ra \(AH = \frac{6}{7}.\)
Câu 10
Cho khối chóp S.ABCD có thể tích bằng \(a^3.\) Mặt bên SAB là tam giác đều cạnh a và thuộc mặt phẳng vuông góc với đáy, biết đáy ABCD là hình bình hành. Tính theo a khoảng cách d giữa SA và CD.
A. \(d = 2\sqrt 3 a.\)
B. \(d = \sqrt 3 a.\)
C. \(d = \frac{{2a}}{{\sqrt 3 }}.\)
D. \(d = \frac{a}{2}.\)
Gọi O là trung điểm của AB, tam giác SAB đều \(\Rightarrow SA \bot AB \Rightarrow SA \bot \left( {ABCD} \right)\)
\(\Rightarrow {V_{SABCD}} = \frac{1}{3}SA.{S_{ABCD}} = {a^3} \Rightarrow {S_{ABCD}} = 2{a^2}\sqrt 3\)
Gọi H là hình chiếu của C lên AB suy ra \(CH \bot AB\)
Mà \(SO \bot CH\) nên ta được \(CH \bot \left( {SAB} \right)\)
Xét tam giác ABC có diện tích \(S = {a^2}\sqrt 3 \Rightarrow d\left( {C;AB} \right) = \frac{{2S}}{{AB}} = 2a\sqrt 3\)
Mặt khác \(CD//\left( {SAB} \right) \Rightarrow d\left( {SA;CD} \right) = d\left( {C;\left( {SAB} \right)} \right) = 2a\sqrt 3 .\)
Cho hình chóp có đáy là hình vuông cạnh a,\(SD = \frac{{a\sqrt {17} }}{2}\) . Hình chiếu vuông góc H của S lên mặt (ABCD) là trung điểm của đoạn AB. Gọi K là trung điểm của AD. Tính khoảng cách giữa hai đường SD và HK theo a.
A. \(d = \frac{{a\sqrt 3 }}{7}\)
B. \(d= \frac{{a\sqrt 3 }}{5}\)
C. \(d = \frac{{a\sqrt {21} }}{5}\)
D. \(d = \frac{{a\sqrt 3 }}{7}\)
Hướng dẫn

Ta có
\(SH = \sqrt {S{D^2} - H{D^2}} = \sqrt {S{D^2} - H{A^2} - A{D^2}} = a\sqrt 3\)
Kẻ \(HM \bot BD\), gọi O là giao điểm của AC và BD ta có:
\(AO = \frac{{AO}}{2} = \frac{{a\sqrt 2 }}{2} \Rightarrow HM = \frac{{AC}}{2} = \frac{{a\sqrt 2 }}{4}\)
\(HK//BD \Rightarrow HK//\left( {SBD} \right)\)
\(\Rightarrow d\left( {HK;SD} \right) = d\left( {HK;\left( {SBD} \right)} \right)\)
Mà \(d\left( {HK;\left( {SBD} \right)} \right) = d\left( {H;\left( {SBD} \right)} \right)\)
Kẻ \(HN \bot SM\) tại M. Khi đó \(d\left( {H;\left( {SBD} \right)} \right) = HN\).
\(\frac{1}{{H{N^2}}} = \frac{1}{{S{H^2}}} + \frac{1}{{H{M^2}}} \Rightarrow HN = \frac{{a\sqrt 3 }}{5}\)
\(\Rightarrow d\left( {HK;SD} \right) = \frac{{a\sqrt 3 }}{5}\)
Câu 2
Cho hình chóp S.ABCD có đáy là hình vuông; mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy; \(BC = a\sqrt 3\). Tính khoảng cách h từ điểm A đến mặt phẳng (SCD).
A. \(h = \frac{{3a}}{{\sqrt 7 }}\)
B. \(h = \frac{{a\sqrt 2 }}{3}\)
C. \(h = \frac{{a\sqrt 6 }}{3}\)
D. \(h = \frac{{a\sqrt {21} }}{7}\)
Hướng dẫn

Gọi M, N lần lượt là trung điểm của AB và CD.
Vì tam giác SAB đều và \(\left( {SAB} \right) \bot \left( {ABCD} \right)\) nên \(SM \bot \left( {ABCD} \right)\)
Vì \(AM//CD \Rightarrow AM//(SCD) \Rightarrow h = d\left( {A,\left( {SCD} \right)} \right) = d\left( {M,\left( {SCD} \right)} \right)\)
Vì \(MN//BC \Rightarrow MN \bot CD\)
Gọi H là hình chiếu vuông góc của M lên SN.
\(\left\{ \begin{array}{l} CD \bot MN\\ CD \bot SM \end{array} \right. \Rightarrow CD \bot \left( {SMN} \right) \Rightarrow CD \bot MH\)
\(\Rightarrow MH \bot \left( {SCD} \right)\)
\(MN = AB = BC = a\sqrt 3\)
\(SM = AB.\frac{{\sqrt 3 }}{2} = \frac{{3a}}{2}\)
\(\frac{1}{{M{H^2}}} = \frac{1}{{S{M^2}}} + \frac{1}{{M{N^2}}} \Rightarrow SH = \frac{{3a}}{{\sqrt 7 }}\)
Câu 3
Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2a. Đường thẳng SA vuông góc với mặt phẳng đáy, SA=2a. Gọi N là trung điểm của AD. Tính khoảng cách d giữa hai đường thẳng SN và CD.
A. \(d = \frac{{2a}}{{\sqrt 5 }}\)
B. \(d =a\sqrt5\)
C. \(d =a\sqrt2\)
D. \(d = \frac{{2a}}{{\sqrt 3 }}\)
Hướng dẫn

Gọi M là trung điểm BC
Vì CD//MN nên CD//(SMN)
Suy ra: d(CD;SN)=d(CD,(SMN))=d(D;(SMN))=d(A;(SMN))
(Vì N là trung điểm của AD)
Vẽ \(AH \bot SN\) tại H.
Ta có:
\(\begin{array}{l} \left\{ \begin{array}{l} MN \bot SA\\ MN \bot AN \end{array} \right. \Rightarrow MN \bot (SAN)\\ \Rightarrow MN \bot AH \Rightarrow AH \bot (SMN)\\ \frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{N^2}}} \Rightarrow AH = \frac{{2a\sqrt 5 }}{5}\\ \Rightarrow d\left( {SN,CD} \right) = \frac{{2a\sqrt 5 }}{5} \end{array}\)
Câu 4
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Đường thẳng SA vuông góc với mặt phẳng đáy, SA=a. Gọi M là trung điểm của cạnh CD. Tính khoảng cách d từ M đến mặt phẳng (SAB).
A. \(d = a\sqrt 2\)
B. \(d = 2a\)
C. \(d = a\)
D. \(d = \frac{{a\sqrt 2 }}{2}\)
Hướng dẫn

Gọi N là trung điểm của AB.
Ta có:
\(\begin{array}{l} \left\{ \begin{array}{l} MN \bot AB\\ MN \bot SA \end{array} \right. \Rightarrow MN \bot (SAB)\\ \Rightarrow d(M,(SAB)) = MN = AD = a \end{array}\)
Câu 5
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy. Biết hình chóp S.ABC có thể tích bằng \(a^3\). Tính khoảng cách d từ điểm A đến mặt phẳng (SBC).
A. \(d = \frac{{6{\rm{a}}\sqrt {195} }}{{65}}\)
B. \(d = \frac{{{\rm{a}}\sqrt {195} }}{{65}}\)
C. \(d = \frac{{4{\rm{a}}\sqrt {195} }}{{65}}\)
D. \(d = \frac{{8{\rm{a}}\sqrt {195} }}{{195}}\)
Hướng dẫn

Gọi các điểm như hình vẽ.
Ta có \(AI \bot BC,SA \bot BC \Rightarrow BC \bot \left( {SAI} \right)\)
Suy ra \(BC \bot AK \Rightarrow AK = {d_{\left( {A,\left( {SBC} \right)} \right)}}\)
Ta có: \(V = {a^3},{S_{\Delta ABC}} = \frac{{{a^2}\sqrt 3 }}{4} \Rightarrow SA = 4a\sqrt 3\)
Mà \(AI = \frac{{a\sqrt 3 }}{2}\)
Trong tam giác vuông SAI ta có \(\frac{1}{{A{K^2}}} = \frac{1}{{A{S^2}}} + \frac{1}{{A{I^2}}}\)
Vậy \(d = AK = \sqrt {\frac{{A{S^2}.A{I^2}}}{{A{S^2} + A{I^2}}}} = \frac{{4a\sqrt {195} }}{{65}}.\)
Câu 6
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SD = \frac{{a\sqrt {17} }}{2}, hình chiếu vuông góc H của S lên mặt (ABCD) là trung điểm của đoạn AB. Tính chiều cao h của khối chóp H.SBD theo a.
A. \(h = \frac{{\sqrt 3 a}}{2}\)
B. \(h = \frac{{a\sqrt 3 }}{7}\)
C. \(h = \frac{{a\sqrt {21} }}{2}\)
D. \(h = \frac{{3a}}{5}\)
Hướng dẫn

Từ H kẻ HI vuông góc với BD \(\left( {I \in BD} \right)\) và \(HK \bot SI\) suy ra \(HK \bot \left( {SBD} \right).\)
Ta có \(SH = \sqrt {S{D^2} - H{D^2}} = a\sqrt 3\) và \(HI = \frac{{AC}}{4} = \frac{{a\sqrt 2 }}{4}\)
Suy ra \(HK = \frac{{SH.IH}}{{\sqrt {S{H^2} + I{H^2}} }} = \frac{{\frac{{{a^2}\sqrt 6 }}{4}}}{{\frac{{5a\sqrt 2 }}{4}}} = \frac{{a\sqrt 3 }}{5}\)
Do đó chiều cao của khối chóp H.SBD là \(h = \frac{{a\sqrt 3 }}{5}.\)
Câu 7
Cho hình chóp S.ABCD có đáy là hình chữ nhật, \(AB = a,AD = 2a\); cạnh bên SA = a và vuông góc với đáy. Tính khoảng cách d từ A tới mặt phẳng (SBD) .
A. d=a
B. \(d = \frac{{2a}}{3}\)
C. \(d = \frac{{a}}{3}\)
D. \(d = \frac{{a}}{2}\)
Hướng dẫn

Gọi K là hình chiếu của A lên BD nên \(AK \bot BD\)
Ta có \(SA \bot (ABCD) \Rightarrow SA \bot BD \Rightarrow BD \bot (SAK)\)
Từ A kẻ \(AH \bot BD(H \in BD)\) mà \(BD \bot (SAK) \Rightarrow BD \bot AH\)
\(\Rightarrow AH \bot (SBD) \Rightarrow d(A;(SBD)) = AH\)
Kẻ \(\Delta SAK\) vuông tại A, đường cao AH khi đó \(\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{K^2}}}\)
Mặt khác \(\frac{1}{{A{K^2}}} = \frac{1}{{A{B^2}}} = \frac{1}{{A{D^2}}} \Rightarrow \frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{B^2}}} + \frac{1}{{A{D^2}}} = \frac{9}{{4{a^2}}}\)
Suy ra \(AH = \frac{{2a}}{3}\), vậy khoảng cách cần tính là \(d(A;(SBD)) = \frac{{2a}}{3}\)
Câu 8
Cho hình chóp S.ABC có SA, SB, SC đôi một vuông góc với nhau và SA=a, SB=3a, SC=4a. Tìm độ dài đường cao SH của hình chóp.
A. \(SH = \frac{{14a}}{{13}}.\)
B. \(SH = 7a.\)
C. \(SH = \frac{{12a}}{{13}}.\)
D. \(SH = \frac{{13a}}{{12}}.\)
Hướng dẫn
Độ dài đường cao SH của khối chóp là:\(\frac{1}{{S{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{S{B^2}}} + \frac{1}{{S{C^2}}} = \frac{{169}}{{144{a^2}}} \Rightarrow SH = \frac{{12a}}{{13}}.\)
Câu 9
Cho hình hộp chữ nhật ABCD.A’B’C’D’ có các cạnh \(AA' = 1,AB = 2,AD = 3.\) Tính khoảng cách d từ điểm A đến mặt phẳng (A’BD).
A. \(d = \frac{{49}}{{36}}.\)
B. \(d = \frac{{9}}{{13}}.\)
C. \(d = \frac{{7}}{{6}}.\)
D. \(d = \frac{{6}}{{7}}.\)
Hướng dẫn

Dựng \(AK \bot BD,K \in BD\) mà \(AA' \bot BD\) suy ra \(BD \bot \left( {AA'K} \right)\).
Dựng \(AH \bot A'K,H \in A'K\) mà \(AH \bot BD\) suy ra \(AH \bot \left( {A'BD} \right)\) nên \(d\left( {A,\left( {A'BD} \right)} \right) = AH\)
Ta có tam giác ABD vuông tại A, đường cao AK nên \(\frac{1}{{A{H^2}}} = \frac{1}{{A{K^2}}} + \frac{1}{{A{{A'}^2}}}\)
Ta có tam giác AA’K vuông tại A, đường cao AH nên \(\frac{1}{{A{H^2}}} = \frac{1}{{A{K^2}}} + \frac{1}{{A{{A'}^2}}}\)
Suy ra \(\frac{1}{{A{H^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{D^2}}} + \frac{1}{{A{{A'}^2}}}\)
Suy ra \(AH = \frac{6}{7}.\)
Câu 10
Cho khối chóp S.ABCD có thể tích bằng \(a^3.\) Mặt bên SAB là tam giác đều cạnh a và thuộc mặt phẳng vuông góc với đáy, biết đáy ABCD là hình bình hành. Tính theo a khoảng cách d giữa SA và CD.
A. \(d = 2\sqrt 3 a.\)
B. \(d = \sqrt 3 a.\)
C. \(d = \frac{{2a}}{{\sqrt 3 }}.\)
D. \(d = \frac{a}{2}.\)
Hướng dẫn

Gọi O là trung điểm của AB, tam giác SAB đều \(\Rightarrow SA \bot AB \Rightarrow SA \bot \left( {ABCD} \right)\)
\(\Rightarrow {V_{SABCD}} = \frac{1}{3}SA.{S_{ABCD}} = {a^3} \Rightarrow {S_{ABCD}} = 2{a^2}\sqrt 3\)
Gọi H là hình chiếu của C lên AB suy ra \(CH \bot AB\)
Mà \(SO \bot CH\) nên ta được \(CH \bot \left( {SAB} \right)\)
Xét tam giác ABC có diện tích \(S = {a^2}\sqrt 3 \Rightarrow d\left( {C;AB} \right) = \frac{{2S}}{{AB}} = 2a\sqrt 3\)
Mặt khác \(CD//\left( {SAB} \right) \Rightarrow d\left( {SA;CD} \right) = d\left( {C;\left( {SAB} \right)} \right) = 2a\sqrt 3 .\)