Cho số phức \(z = x + yi\,\,\left( {x,y \in \mathbb{R}} \right).\) Khi đó phần thực a và phần ảo b của số phức \(\omega = \frac{{\overline z + i}}{{iz - 2}}\) là:
A. \(a = \frac{{x\left( {2y + 1} \right)}}{{{{\left( {y + 2} \right)}^2} + {x^2}}},\,\,b = \frac{{{y^2} + y - {x^2} - 2}}{{{{\left( {y + 2} \right)}^2} + {x^2}}}.\)
B. \(a = \frac{{ - x\left( {2y + 1} \right)}}{{{{\left( {y + 2} \right)}^2} + {x^2}}},\,\,b = \frac{{{y^2} + y - {x^2} - 2}}{{{{\left( {y + 2} \right)}^2} + {x^2}}}.\)
C. \(a = \frac{{x\left( {2y + 1} \right)}}{{{{\left( {y + 2} \right)}^2} + {x^2}}},\,\,b = \frac{{{y^2} + y - {x^2} + 2}}{{{{\left( {y + 2} \right)}^2} + {x^2}}}.\)
D. \(a = \frac{{ - x\left( {2y + 1} \right)}}{{{{\left( {y + 2} \right)}^2} + {x^2}}},\,\,b = \frac{{{y^2} + y + {x^2} - 2}}{{{{\left( {y + 2} \right)}^2} + {x^2}}}.\)